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STATIC AND DYNAMIC STRAIN MEASUREMENT ON A PLANE SURFACE. 

TRIDIMENSIONAL PHOTOELASTICITY 

A. LAGARDE 
Laboratoire de Mecanique des Solides, 
Universite de Poitiers, 
Unite Mixte de Recherche CNRS 6610 
SP2MI- Teleport 2 - BP 179, 86960 FUTUROSCOPE CEDEX, FRANCE 

Abstract 

For small .or large strains, using two orthogonal gratings marked upon a plane measure 
base, we determine, in its plane, the rotation of the rigid solid and the algebraic values 
of principal extensions. An optical setting gives the measure by optical diffraction, 
without contact and at a distance, within 10"5 accuracy by introducing quasi-heterodyne 
detection. The holographic record permits the extension of the measure to the whole of 
a plane surface. For the dynamic event, the grating interrogation by beam laser with 
angular coding gives not only strains for local measure base but also rigid motions. 
In photoelasticity, the optical slicing method is recalled; then, we bring up a new 
implementing with a C.C.D. camera which permits to obtain quickly isoclinics and 
isochromatics and also the isostatics for one model slice limited by two parallel plane 
laser beams. 

1 Introduction 

It is well known that the advent of the laser has permitted a spectacular development of 
the photomechanics. 
The means of digitalization of the images, their acquisition and their treatment by 
computer offer new possibilities. 
We have selected to present you works of our side about two implement basis in 
experimental   mechanic:   the   measurement   of   strains   and   three-dimensional 
photoelasticity. 
The measurement of strain on a small plane base uses numerical or optical spectral 
analysis of orthogonal grating marked on surface. Means to increase the precision are 
given in the two cases. The optical set up for measurement of strain giving this 
possibility is also insensible to the out of plane displacement of the piece. The recourse 
to holography allows to extend the measure to quasi-plane surface. The lecture point by 
point is executed in diferred time. In dynamic the position of the diffracted spots 
permits the determination of the strains and the motion of the local measurement base. 



In three-dimensional photoelasticity we briefly recall the present practice and the 
possibilities of non-destructive optical slicing method, the one point-wise and the other 
in whole field. We also recall fundamental results on wave light propagation in weakly 
anisotrope environment and their importance for the analysis of thin slice and the new 
conception of the modelisation. The whole field optical slicing method is then presented 
in its recent developments. 

2 Small and large strains measurement 

The idea to realise grids at the surface of a specimen in order to accede to its strains is 
not new. This idea has been introduced by Rayleigh [1] in 1874 suggesting the use of 
moire phenomenon which has been developed by Dantu [2] in 1957. This technique 
gives the field of displacements which has been also obtained using orthogonal grids. 
The coherent radiation of the laser has permitted the development of the interferometric 
moire [3] which offers a higher accuracy. Always, in view to increase the accuracy, let 
us notice the numerus works dealing with the interpolation between fringes and the 
multiplication of the fringes [4] and other technics [5]. The strains are obtained by the 
help of a derivation process. 
The direct measurement of strains has been realised from the local observation of circle 
marked on the surface. Orthogonal grids have also been employed. With a smaller pitch 
the information has been extracted from the grating by optical diffraction either locally 
[6] or along a line using filtering [7]. The use of a optoelectronic device [8] has allowed 
an automatic calculation of strain distribution. With the recent development of C.C.D. 
cameras and image processings, these methods are being revived [9-10]. 
Our purpose is, on an area which can be of very small dimension, the determination of 
algebric values of the principal extensions for large and small strains with a good 
accuracy and on a whole-field. 

2.1 LOCAL MEASUREMENT OF STRAINS 

2.1.1. PRINCIPLE 

We use tangent linear application [11] to study deformations of an orthogonal grating of 
pitch p which is engraved or marked on the local plane surface of a specimen submitted 
to loadings. This grating is supposed to follow perfectly the displacements in each 
point. Thus (Fig. 1) an interior point M(X,Y)is transformed to m(x,y)by the 

following transformation: 

x = —cosc^ X + —cosa2 Y 
p ,p 
a
l       • ,r a2 v y = —-suiai X + — sma2 Y 
P P 
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x   c 

Fig. 1 - Deformation of a square 
The gradient of the transformation tensor F is contant inside the parallelogram. 

The Cauchy-Green's right tensor C = lFFhas the following matrix : 

C = 
al a2        / \ -±—-cos(a2 -a{) 

V P 

ai a2 

P2 
cos(a2 -o.\) 

Using the polar decomposition of F we can express the rigid-body rotation of the solid, 
R: 

a7 cosai - ai sinai 
tanR = — - ■ L 

a2 sinct2 + &\ cosccj 

We assume the strains are uniform on the measurement base. Thus we obtain the 
orientation and the value of the principal extensions and the rigid body rotation from a 
knowledge of four parameters (two pitches p! and p2 and two angles o^and a2). 
These values are experimentally obtained either by optical Fourier Transform or by 
numerical Fourier Transform. 
The first procedure gives the strain with an accuracy of 10"3 (sec. 2.1.3). For better 
performances we use the phase shifting technique (sec. 2.2.1). The second procedure 
requires an adapted interpolation process (sec. 2.2.1). 

2.1.2. GRATING REALISATION 

We use [12] the interferences of two beams laser for the exposure of a photosensitive 
coating~Used directly for diffraction. The repeate of these interferences allows direct 
engraving at the surface of the material (epoxy, steel, ...) with the help of a yag laser. 
We use also the Post replication technic to obtain phase grating. All technics give 
grating which are disturbed when large strains appear. We develop a technic to make 
small viscoelastic pavements. Other ways to realise grating with lines or points consist 
to use print, transfer, inking pad, mold, point or issued from the specimen structure 
clothes, sails. The choice depend of the size of the measurement base and the nature of 
the problem. 

2.1.3. MEASUREMENT BY OPTICAL DIFFRACTION 



The diffraction phenomena of a parallel beam of coherent light passing through a plane 
grating is well known. 
We have represented in Fig. 2 the diffraction image by a grating of parallel crossing 
lines. We notice that the direction formed by the diffraction points is perpendicular to 
the orientation of the family of corresponding lines. It is now easy to describe 
p1,p2,a1>a2as functions of d1,d2,51,52 : (L: distance between the grating and 

the screen) 

\JL
2
 +d? XJL

1
 + d2

2 u 7i 

Pt 
The figure 2 gives an idea of the decreasing of the spots intensities from zero order 
using blots with decreasing areas. In fact, on the screen, all the spots have the same 
diameter. 

Fig. 2 - Diffraction image by a grating 

The diffraction image is recorded by a C.C. D. camera, and the centro'id (x, y) of the 
spots computed from an intensity analysis. 
The grating analysis using the optical diffraction allows measurements at distance and is 
very convenient for strain determination in hostile environment. For example, we give 
the evolution of longitudinal and transversal strains determined by this way on a 
specimen in epoxy resin and subjected to an uniaxial test at the frozen temperature. The 
measure base was 0,5 x 0,5 mm2 and the line density 300 by millimeter. 
From this test we can evaluate the strain accuracy to 10'3. 
Let us notice that the method has been adapted in dynamics [13] and also, in statics, to 
studies of cylindrical specimens [14]. 

2.1.4. MEASUREMENT BY SPECTRAL ANALYSIS 

The crossed grating is recorded by C.C.D. camera and an algorithm of bidimensional 
DFT is used. 
The location of the 5 peaks of the spectrum (central order and 4 peaks order ± 1) gives 
searched parameters as for the optical analysis. 

2.2. IMPROVEMENT OF ACCURACY 

2.2.1. THE TOOLS OF THE ACCURACY 



The quasi-heterodyne or phase shifting method [15] 
Now, this method is very well known. We note it for memory. 
The spectral interpolation method [16] [17] 
Let us consider f(x) periodic function, F(N) his Fourier Transform (F.T.), x and N are 
reciprocal variables respectively spatial and spectral. Let T the period of sampling, 
satisfying the Shannon condition, M the number of discretisation points, MT the 
wideness of the window limiting the sampling function. 
We use the DFT (noted Fk) with nT and k/MTthe reciprocal variables respectively 
spatial and spectral. The frequencies of the spectrum of f (nT) are calculated with the 
peaks of the square modulus of Fk. If the number M of points of discretisation is one 
multiple of the period of the signal, the DFT is equal in these points to the continuous 
F T. The most important peak of coordonate k', corresponds to the principal frequency 
of the signal N = k'/MT. In practical case, M is not one multiple of the period of the 
signal. We show that the principal frequency is given by the relations ship. 

N = 
ks+ß 

MT 
ß = Re 

2Ft K, 

where ks is the integer value of the coordonnee the nearest of the principal peak. 
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2.2.2. THE DEVICE 

Using a numerical Fourier transform of the grating image or the optical transform by 
laser beam diffraction, an out of plane translation between the reference state and the 
deformed state of the specimen leads to an error in the strain detemination. We present 
a measurement method at distance insensitive to the translations and with better 
accuracy by the use of quasi-heterodyne detection [17-18]. 
We consider in normal incidence the diffraction of a laser beam by a parallel equidistant 
lines grating. The optical device (Fig. 3) is made by a cylindrical rniror having the same 
axis as the incident beam. After reflecting, the two diffracted beams of the order ± 1 
interfere on the level of the axis of the cylinder. The interference field is composed of 
parallel fringes and its analysis allows to characterize the geometry of the grating 
bounded to the piece. The interference field has a depth of several millimeters, function 
of the transverse dimension <jf the diffracted beams where the geometry of the fringes is 
identical. There is so no problem of focusing and an out of plane displacement of the 
piece and therefore of the interference zone does not lead to an error measurement. To 
be free from the translation in the plane of the grating, we use a dimension of grating 
superior to the diameter of the incident beam. 

Cylindrical mirror 

Grating 

Laser (X) 

Fig. 3 - Optical device 

Microscope lens 

Bravais compensator 



The interference field can be analysed using the numerical spectral interpolation. We 
have shown that the use of the quasi-heterodyne technique gives better results than the 
previous one. We applied this by moduling the phase of one of the diffracted beam 
using a Bravais compensator. For an unidimensional signal this technique consists of 

the use of three dephasing \\i   (calculated by Fourier transform) for the determination 
of the phase <j) (x) and so of the value of the period of the signal. The same procedure is 
applied for a two-dimensional signal. In order to show the performances of the 
developped optical device, we give results [19] from an uniaxial traction test on a 
plexiglas specimen submitted to step of strain of 2 x 10'5. 

2.3. WHOLE FIELD STRAINS MEASUREMENT 

We have developped a whole field strain measurement method [20] which uses the 
recording of the grating by holography (Fig. 4). The image of the crossed grating 
illuminated in normal incidence is formed in an optical device that realises successively 
two Fourier transforms. We obtain so in the second Fourier plane the interferences of 
the diffracted beams which create a new grating. A filter located in the first Fourier 
plane allows to eliminate the zero order and the orders superior to ± 1. Few different 
orientations of the reference beam are generated to record so many object states on the 
same holographic plate. 

Object K 
Holographic 

Plate 

Fig. 4 - Holographic recording device 
The figure 5 shows the optical device for the recording of the image of the grating. This 
device allows to generate 4 different reference beams. 

Hologram 

1-3 Objective» 
4 Prism 
5-8._.Lenj 
9-12_Beam Splitter 
13-l».Mlrron 

/ 
Object 

20 Shutter 
21 Filter 
22 Object 
23. -Hologram 

'■> Ar Laser 

Fig. 5 - Set up for the holographic recording device 
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At the reconstruction, the illumination.of the holographic plate using the reference 
beam gives the order ± 1 in each point of the plate, image of an object point. The 
analysis of the reconstructed grating using the device with a phase shifting procedure 
gives the determination point by point of the strain components in the whole-field. It is 
also possible for the strain determination to employ the set-up for the recording 
procedure. This method has been used for a ductile fracture investigation. 

2.4. HIGH SPEED LOCAL STRAINS DETERMINATION 

The diameter of the plane measurement base is about 1 mm. The crossed grating, 
marked on the surface, has a density equal to 200 lines by millimeter. 
The method is always based on the interrogation of a crossed grating from diffraction 
phenomenon and we use the five diffracted beams 0 ; ± 1 order. To separate the spots 
on the recording (with film or C.C.D. camera) during the dynamic event, we use the 
angular coding. At each sampled time one cylindrical beam with diameter of about 1 
cm light the crossed grating figure 6. 
Generally, the unknow quantities are : 
- 4 parameters caracteristic for the measure base orientations and pathes of the two 
grating taking into acount the pure strains and the rotation of the rigid solid in the plane 
of that base. 
- 2 angular parameters for the orientation of the base. 
- 5 distances from the measure reference to the position of the spots in the screen. 
That is to say 14 unknown quantities. 
At each time, one experimental data is the orientation of the incident beam. The 
mesured positions on the screen of the corresponding 5 spots lead to 15 equations. 
It can be proved that at each sampled time, the unknown quantities are the solutions of 
one nonlinear system of fifteen equations caracteristic for the five considered beams. 
Taking into acount the given diffraction spots is therefore süffisant to solve the 
problem. 
It is to notice that the method gives not only the strain composantes tensor on the 
measure base but also the displacements and the rotations of the measure referent. One 
lecture will deal with it and will precise its performances. 

Dynamic loading 

Fig. 6 - Schema of a part of the optical recording device 



3 THREE-DIMENSIONAL PHOTOELASTICITY 

3.1. PRESENT PRACTISE AND NEW POSSIBLE WAY 

Photoelasticity still give subjects to searchers. It is the case for the study of the residual 
stresses in glass specially by means of integrated photoelasticity. So it is with the use of 
the isodynes in vue of taking into account the three dimensional local effects. 
These fields are particular ones. We deal with the study of elasto-static problems about 
pieces having complex geometry. In this way, with the help of the well known stress 
frozen technic, photoelasticity is still often used in the test and research laboratories of 
motor vehicle and aeronautic industries. 
This situation proves the efficiency of the photoelastic study ; this efficiency is due to 
the fact that the model being worked out with the loading elements then the real 
boundary conditions are taken into account. In the last ten years, photoelasticity and 
numerical simulation have been used sometines in parallel. 
The process consists in first adjusting the boundary conditions in order to get the 
obtained numerical values identify to the experimental values, the mechanical 
parameters "being those corresponding to the frozen temperature. Then, the stress 
distribution inside the prototype as obtained with its own mechanical parameters. So, 
we become free from difficulty due to the quasi incompressibility of the model material 
at the frozen temperature. 
Let us notice a recent progress: the original, necessary to make the mould, can be 
realised from C.A.O. data by means of the stereolithography. Now, it is even possible to 
directly realise the model with frozenable resin. 
The exploitation of the frozen model is executed by mechanical slicing into plane sheets 
with a thickness from 2 to 4 mm. Each sheet polished roughly and analysed in linear 
and circular polariscope like in plane photoelasticity. Let us notice that slicing and 
analysing of one serie of parallel sheets require one qualify personal working during 
one week. The time of work is reduce if the use of immension thank because is not 
necessary to polish roughly the slices. The aim is to determine the parameters of interest 
for Ingeneers : the angle a and the difference a' - a" of the secondary principal 
stresses. These quantities obtained for three series of mutually orthogonal planes make 
possible, using well known relations, to integrate the equilibrium equations with known 
boundary, conditions. Then, the most general study, scarcely done, requires the making 
and the slicing of three models. Pratically, most often, we restrict ourself in determining 
only the above quantities in principal planes in order to optimiste the shape of the 
model. 
Over fifteen years ago, we have developped and used two optical slicing methods of the 
model; one point wise [21 to 25], the other whole field [24 to 27]. In a three- 
dimensional medium, these two methods give a non destructive way of investigation, 
based on the scattering light phenomenon. This phenomenon is intensified by 
introducing fine particles of silice in the epoxy resine. 
The point wise method of optical slicing offers the possibility to use the light scattering 
phenomenon as polarizer or as analyser. This method with a linear detection of 
parameters is automatized in order to facilitate the use; it permits a precise 
determination, in every point of the sheet, of the three optical parameters leading in 
general to the determination of a and a'-a" (sec. 3.2.2.). Let us notice that a number 
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of methods have been developped to determine the three optical parameters, more 
particulary for the thick medium located between the sheet and the model boundary ; it 
is analysed in the book of Srinath [28]. Let us mention the iteractive process and the 
ones using polarizer and analyser rotations and compensator [29]. 
For example, we have determined the stress tensor along a line in a prismatic bar, under 
torsion, the cross section of which being an equilateral triangle. The values of the 
stresses are normalised by the maximum value of the shear of the cross section. So, in 
the base of a turbine blade, we could determine the values of the equivalent stress in the 
Von Mises sense at various points for a tensile load [23] [25]. 
The whole field optical slicing method is based on limitation of a sheet by two parallel 
beams emitted from a laser. 

Bircfringent 
slice 

y i 

Beam 

Scattered 
light 

Fig. 7 - Isolation of a slice with two plane laser beams 

Then, the model is analysed slice by slice. The scattered radiations interfere (Rayleigh's 
law) on the image plane of the middle of the sheet. They make into account the 
different polarizations that depend of optical caracteristics of the sheet. Two methods 
are been developped (sec. 3.4.). The aim of this part is to demonstrate that it is possible 
to obtain the isoclinic and isochromatics fringes and to plot the isostatic patterns. It is 
the new possible way. 
Before presenting the method principles, we shall give the new conception of the 
modelisation of the light waves propagation in three dimensional medium having low 
anisotropy. 

3.2. PROPAGATION OF THE LIGHT WAVE THROUGH PHOTOELASTIC 
MEDIUM 

To define the light propagating direction in a photoelastic medium a basic hypothesis 
consist in assuming the medium to be isotropic (indeed current photoelastic materials 
are slightly anisotropic). It follows that for a ray light propagating along z direction, the 
wave planes (x, y) are orthogonal to z . 
It can be shown that the secondary principle directions of the indice tensor and that of 
the stress tensor coincide and that we have the following relationship. 

n' - n0 = C[ a' + c2 (a" + az) 
n"-n0 =q cr" + c2 (<J' + GZ) 

where n' and n'' denote the secondary principal indices in the wave-plane (x,y) and 
a1,a"are corresponding secondary principal stresses; c„ c2 are constants for a 
photoelastic material. 



10 

3.2.1. THE CLASSICAL SCHEME 

In three-dimensional photoelasticity it is usually assumed that the directions of 
secondary principal stresses and their values are constant through the thickness dz of a 
slice having its parallel face normal to z . This assumption allows to consider this slice 
as a birefringent plate characterized with the two following parameters. 

- secondary principal angle a = (a, <r') - angular birefringence (j) = —-—, 
K 

5 = dz(n',n") =C(a',a") dz   C = c1-c2       (Cbeing aphotoelastic constant). 

3.2.2. ABEN SCHEMATISATION 

Fig. 8 - Orientation of the characteristic A' directions and the a' directions at the 
entrance and the emergence 

Aben in 1966 showed that when rotation of secondary principal axes was present, there 
were always two pairs of perpendicular conjugate « characteristic directions » (Fig. 8). 
He distinguished the primary characteristic directions at the entrance of light 
(A'e,A"e), and the secondary characteristic directions (A's,A"s)for the light 
emerging from the medium. The light linearly polarized at the entrance along one of the 
primary directions emerges as linearly polarized along the conjugate secondary 
direction. We will denote by R the angle determinated by two such directions, 

R = (A'e , A's) and by a   the angle (x, A'e ). 
The characteristic directions are generally different from the secondary principal 
directions of the stress tensor (or those of index tensor). At the entrance we have 
(a'e,a"c)and at emergence we have  (a's,a"s)   from the medium. We denote 

ao-(<*Y»CT,f) • 

3.2.3. HYPOTHESIS FOR A THIN SLICE 

For the case where dx/dz and a' -G" are constant through a thickness, important 
conclusions follow [30 - 31]: 
- The bisecting lines for the angles formed by two associated «characteristic 
directions » coincide with those for the anlges formed by the associated secondary 
principal directions at the entrance and at the exit, (Fig. 8). 
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Remark: The bisectors mentioned correspond to the secondary principal directions 
(mechanical or optical) at mid thickness ; so their directions are defined by the angles 
± R/2 from the characteristic directions : 

- The phase difference (j> characteristic to the medium traverses by the light wave 
along two characteristic orthogonal directions is generally different from the angular 
birefringence  which  would  result  in  the   absence   of rotation  R.   The   values 

R,a ,<j>   anda,a0,<j> are linked [23 - 27]. 

About the torsion strain, in a bar of equilateral triangular section, let us recall that the 
Aben schematisation gives good concordance between calculated and experimental 
results for slices inclined at an angle of rc/4 from the axis of the model with the 
thickness of the slices being only 2 mm for classical size of model [23]. 

3.2.4. DISCRETE ANALYSIS INTO THIN SLICES 

This technique approaches the thick medium, in the direction z of ligth propagation, by 
n plane thin slices perpendicular to z [31 - 32]. This approach gives more realistic 
images in'comparison with experimental images : in this case, we have variation of the 
stresses difference along the thickness ; the Aben's hypothesis does not respect this 
condition. One poster is devoted to this discrete analysis and shows this interest, in 
particular simplicity and good connexion with finite element method. 
About the behaviour of slightly anisotropic medium, with a large thickness, crossed by 
light, the Poincare's theorem permits us the representation by birefringent plate 
followed by a rotatory power (or by the inverse position, of the value of the rotatory 
power) 

3.3. WHOLE-FIELD ANALYSIS WITH A PLANE POLARISCOPE 

Here, the analysis with a light-field polariscope is presented as it corresponds to the 
whole-field method of optical slicing. One can conduct an analogous study for a dark 
polariscope. 
Let us examine a slice (which should be obtained by freezing and slicing) in a plane 
light-field (rectilinear) polariscope.  In each point the  slice  is represented by  a 
birefringent plate and a rotatory power. Let I0 designate uniform light-field illumination 
and x the polarizing axis of the polarizer. Then the light intensity is : 

I = I0[cos2 R-sin 2 a* sin2(a* + R) sin2 <j>*/2] 
The extrerrjum values for intensity distribution correspond to : 

a* =R/2 + k7t/4, k = 0,1,2,... 
In order to specify the condition of analysis of fringe patterns we plotted the variations 
of Imax and Imin. Versus  (j)   for different values of cc0   obtained following the 

relationships given in sect. 3.2.3. As example, curves were plotted fora0 =7t/9in 
Fig.9. 
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Fig. 9 - Variation of Imax and Imin as a function of $ (a0 < TC/9) 

The foregoing analysis indicates that for small values of a0 (a0 <n/9) the maximum 
intensity Imax shows a reduced modulation. Thus, it characterizes an isoclinic zone 
which permits one to locate the secondary principal stress directions (or those of the 

indices) in the median plane of a slice. This zone corresponds to a   = R/2   mod rc/2 
(remark sect. 3.2.3.). The orientation of the polarizer then coincides with one of the 
secondary principal directions in the median plane. This interesting result is analogous 
to the one'established by Hickson [33] for a dark-field polariscope. 
It should be emphasized, that in order to avoid errors during the numerical integration 
procedure, the discritization points should lie on the median plane of a slices. 
If a 0 increases, the Imax modulation increases and it becomes very pronouced for 

ctg = 7t/3. In this case the isoclinic zone disappears although it should be noticed that 

the isoclinics are discernible till a Q value of n/6. 
The term Imin which is strongly modulated for a 0 close to TI/6, characterizes the 

isochromatic pattern. The extremum values occur for <|> = k TI (k = 1,2...) and it follows 

that localization of fringes is practically independent of the rotation of secondary 
principal axes. 
We can now conclude by noting result: investigation of a slice within the plane 
(rectilinear) polariscope allows one to determinate the secondary principal stress 
directions in the median plane (without resorting to rotatory power measurements) and 
the angular birefringence  <j>  for the multiple n  -values when the rotation of the 

secondary principal axes is less than u/6. 
We should point out that the condition on the orientation of the secondary principal axis 
is not very limiting since one is able to choose the slice-thickness for the non- 
destructive optical slicing method. 

3.4. WHOLE-FIELD OPTICAL SLICING METHOD 

We have developped two methods using the limitation of the sheet by two parallel plane 
beams emitted from a laser. The scattered radiations interfere (Rayleigh's law) in the 
image plane of the middle of the sheet. The informations concerning isoclinic and 
isochromatics patterns of the sheet are obtained from the square of the correlation factor 
Y of the two speckle fields. 
We show that the illumination of the speckle field is the following basement relation 

I(x,y) = Ii(x,y) + I2(x,y) + 27i7l7YC0S(V2 ~Yi - *l) 
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with y2 =cos2 R-sin2a*sin2(a* +R)sin<))*/2 

v|/!, VJ/ 2 random variables, rj function of a , (j> , R. 

The speckle fields interfere in amplitude for y = 1 ; they add in energy for y = 0 (it is 
said that they interfere in energy). 

3.4.1. METHOD BASED ON THE CONTRAST MEASUREMENT OF ONE 
RECORDING INTENSITY FIELD 

This method, that uses only one recording with holographic film, is purely optical of 
one recording interesting field. 
We note <> the average spatial. 
The static study of the speckle field gives from basement relation 

a2 = <[l-<I>]2 > = <l!>2 +<I2>
2 +2y2<I, ><I2 > 

As the contrast p; = —— is unit for the two speckle fields, we have for the variance 
<I;> 

a2 =at
2 +a2

2 +2y2 <l! ><I2 > 

We suppose <Ij > = <I2 >then the square contrast p2  of the recording speckle is 

2     1 + Y2 

p   = —-—. Therefore the maximum of contrast of the fringes is 1/3. 

To increase the contrast of the fringes, we use a polychromatic laser (laser with variable 
wave length) [34]. In the regions of the image with y = 1, the grain of the speckle are 
channeled. One pass band filtering gives theoritically a unit contrast. In practice, the 
noise of the film tempers somewhat these results. 
This method was successfully used in the context of linear fracture mechanics to 
determine the caracteristic parameters K, and cron for a semi-elliptical surface crack 
loaded in opening made in a bar in tension [35]. 

3.4.2. METHOD BASED ON THE VARIANCE MEASUREMENT OF THE 
COMBINATION OF THREE RECORDING INTENSITY FIELDS [36 - 37] 

The idea to use a C.C.D. camera instead holographic film was motived by the 
consideration of the density of isochromatic patterns. It is possible to use more big size 
of speckle grain. Then C.C.D. is available. 
To take into account, one background intensity due to the fluorescence phenomenon of 
the material and a part of the scattered light not polarized, we add I1B ,I2B to the 

values I1S and 12s corresponding to Rayleigh laws 

h ~ *1B + hs       h = hs + *2S 
, ,     < I1S >    < I2<? > 

and we suppose k = ——— = ——— 
< I] >      < I2 > 

In these conditions, the basement relation becomes 

I = It +12 + 2 V^1S~V^2S~ Y cos (y! + v|/ 2 + TI) 
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a2 = 2k2 y2 <I, ><I2 > and the variance a   of I - I[ - I2  is     u   =^R.   1   -^n 
The recording of the three fields I, I„ I: and the determination of one variance give a 

value proportional to y   . 

Previous method with New method with C.C.D. 
holographic film and optical filtering camera and image processing 

Fig. 10 - For torsion strain in a bar of square section and a plane slice inclined at an 
angle of n/4 from the axis, tickness 8 mm : comparison of the two methods. 

3.5. SEPARATION OF ISOCLINIC AND ISOCHROMATIC PATTERNS OF THE 
SLICE. ISOSTATTCS PLOTTING 

We recall that the properties of polarization of the scattered ligth (Rayleigh's law) 
permits to realize, with two plane parallel laser beams, the optical slicing giving the 
analysis of the slice in ligth-field polariscope. 
In the plane of the slice, we change the orientation of the beams and we record several 
images of the field (for example sixteen for a variation of rc/2). 

Fig. 11 - Isostatics and isochromatics patterns for one 4mm thicknesses slice 
Then we have süffisant informations caracterising a periodic phenomenon and it is 
possible to calculate in each pixel the Fourier transform of the correlation factor. The 
filtering in Fourier plane of the zero order gives the isochromatics and the same 
operation for the 1 order gives the isoclinic patterns. 
When the isoclinic patterns are determined, the isostatics can be plotted to obtain the 
visualization of the orientations of the secondary principal stress directions. 
The figure 11 shows the results for optical slice in model loaded by concentred force. 
This process is important for the optimization of the design of the shape in mechanical 
construction. 
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4 Conclusion and perspectives 

The optical method based on the grating interrogation on the local plane surface, can 
make measurement at large distance without contact and without difficulties linked to 
the use of electrical alimentation of the electrical strain-gages. This is convenient for the 
control and the measurement in hostil environment. The accuracy is smaller 10"5 against 
10"6 for the strain gage but the size of the measurement base can be more reduced than 
that necessary for rosette strain gage. The recourse to holography allows to extend the 
measure to quasi-plane surface. 
The measurement of the large strains is only limited by the quality of the markage. 
This optical method can allow to extend the metrology in extensometry to domains 
badly adapted to use the electrical strain gage (banded joints, rack, sails, soft materials). 
For one dynamic event, the local grating interrogation gives not only the strains but also 
the rigids motions of the measurement base. Present technical means should permit the 
extension to large plane surface. 
Our works, for optical slicing method in three-dimensional photoelasticity with the 
C.C.D. camera and the means of image processing, show, in statics, that it is easy and 
rapid to determine isochromatics and isostatics of a model slice. 
In next future, it should be good to be able to determine the stress tensor in statics and 
dynamics. 
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The assessment of the T* fracture parameter during creep relaxation 

The limitations of experimental measurement and advantages of a hybrid approach to the 
problem. 

Colin Walker and Peter MacKenzie 
Department ofMechanical Engineering, 
University ofStrathclyde, 
Glasgow, UK 

Abstract 

While most fracture mechanics investigations are concerned with crack growth, there is a 
class of behaviour that occurs during creep relaxation where the plastic zone develops in 
a regime of reducing stress and near-zero crack growth. This behaviour has been 

measured in the aliuninium alloy 7075 T6, using moire" interferometry at 190 C, and the 
experimental data have been used to investigate the T*integral fracture parameter as a 
function of time and creep deformation 

It was found that under time-dependent deformation conditions T* could be measured 
successfully. For a fuller investigation of T* as a function of the deformation a finite 
element model of the specimen was calibrated using experimental data. 

Introduction 

While the use of the J-integral has become widespread in fracture mechanics, progress 
has been slow towards a new parameter that will be valid for conditions where J is by 
definition outside its area of relevance. New fracture parameters such as the T* integral 
have been enunciated (1), and investigated by means of computational models, the 
difficulties in carrying out valid experiments have meant that few studies have attempted 
to correlate theory, computation and experimental measurements (2,3). It is only by such 
means that confidence may be established, and the new formalisms pass into routine use. 

In a previous study the authors have shown how strain field data from a crack growth 
experiment may be analysed, to show that in reality J and to T* are indeed equal in 
situations of modest crack growth as would be expected (3). The main conclusion from 
this work was a validated routine for assessing T* from the strain field components 
around the crack tip as visualised by moire" interferometry . The next phase in the 
investigation of T* is to evaluate it in a situation where either extensive plasticity or 
crack growth occur or where time dependent deformation takes place. This study is 



concerned with time-dependent deformation. 

The particular situation investigated it is one of stress relaxation where the specimen is 
held on a fixed grip configuration at a load sufficient to cause creep at the test 

temperature (190°C for the aluminium alloy 7075 T6). In this experiment, the load 
steadily reduced as the specimen deformed. The crack in essence did not extend which 
meant that the data analysis was a simple matter compared to that for an extending crack. 

T* Integral Fracture Parameter 

The T* integral may be defined following the notation in Figure 1 as 

T* = J[WnI-Tiuu]ds 
r, 

T* may also be defined as a summation along the loading history of the incremental 
form: AT * viz. 

AT* = J[AW8,j -(Ti + AT;)Au,, - ATf -uM ]ds 

The path f should be taken as small as possible but still contain (and avoid) the process 
zone, where intense microcracking will take place, and the strain field parameters will not 
be well defined. 
By suitable manipulation, one may derive 

AT* = J[AW8U -(Cg + Aa„)Auu -Ao^Jr^ds 
r 

-J   J {Aes(oä+iAoü),l-Ao8(es+iAe8)MJdV 

Where T* may now be calculated from the strain field parameters alone, with a 
knowledge of the constitutive relations for the material. 
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Figure 1.   Integration contours for calculation of a path 

integral in a cracked body 

n - outward normal 

r = outer integration contour 

Te        - inner integration contour 

Vs = volume defined by T 

V-V£     = volume defined by Te 

x2 , x2 = coordinate system 

Integration Path 

In the summation of AT* along the loading history, the path T stays stationery in relation 
to the cracked tip i.e. the f moves with the crack tip. 



This implies that data needs to be recorded ahead of the track tip for use eventually as the 
crack propagates. This is the one feature of the grating method that is highly attractive, as 
the whole crack-tip field is recorded as a unity. Given that no crack growth was intended 
in this study, a fixed contour could be used. (Dimensions are given in Figure 2) 
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Figure 2.   Path of integration (distances in mm) 

Experimental Procedure 

The specimen material was a high strength aluminium alloy (7075 T 6), in the shape of a 
compact tension fracture specimen (Figure 3). The starter crack was fatigue precracked 
from a machined notch, although in fact, due to the degree of creep deformation 
envisaged, tills precaution was probably unnecessary. After precracking a 5001ine/mm 
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cross grating was cast on to the area around the crack tip. An epoxy resin was used, 
although at 190°C, this was close to the upper operational limit for epoxy gratings. 
Perceptible degradation took place in the gratings over the period of the test (24 hours) 

Specimen thickness = B 

a= 15.6mm 

W = 25.5mm 

B = 12.7mm 

C = 31.8mm 

E = 30.5mm 

Material - Al - alloy 
7075 ~T6 

Figure 3.   Specimen details 

A servo hydraulic test frame applied the initial load of 12.5 kN and thereafter the 
displacement was held constant. An oven with a low-expansion glass window of optical 
quality maintained the temperature of the test. A shroud to minimise convection currents 
surrounded the window. With this system, it was found that high quality interferograms 
could be recorded using a moire interferometer that has been previously described (4). 
The system is largely immune to ambient vibration; interferograms were recorded in 
three directions (0, 90,45) so that a complete record of deformation was available for any 
point in the field for the times recorded (t=^0, 3,8,15,23,79,283,1318 minutes). (Sample 
interferograms are shown in Figure 3). Over the period of the tests, the load relaxed to 
5. 3kN - i.e. to less than 50 per cent of its original level. 

Fringe Analysis 

Each interferogram was overlain by the outiine of the contour of integration. It will be 
seen that there is a region around the crack tip when no fringes are visible (Figure 4). 
While the basic cause of this is the intense deformation that causes the surface to dimple, 
fringes are actually formed in this region, but the surface rotation directs the diffracted 
light out of the system. For convenience, then, the inner contour was defined outside of 
this zone (Figure 2). Fringe analysis was then carried out using a graphics-digitising 



tablet as input to an analysis programme (5). The volume integration was accomplished 
by decomposing the area between the contours into horizontal and vertical stripes (6). 
Only the bottom half of the area was digitised, in view of the symmetry about the crack. 
As a check to insure that the near-field path remained within the elastic regime, a test of 
the principal stresses was included in the T * evaluation using the von Mises criterion. 
No evidence of yielding was found for times up to 23 minutes. 

Results 

The calculated values for t=0 to t=23 minutes are shown in Table 2. Up to this point, the 
creep zone evolved close to the track tip. Beyond this time, the creep zone spread beyond 
the integration contour. It is possible to calculate T * in this regime, if the creep rates are 
known as a function of time at each position, and one is able to presume that the 
deformation is primarily creep. An interpolation of the creep rates from 79 to 1318 
minutes showed unstable results. The fact remains that there are two simple situations - 
one where the creep zone is limited, and the other where creep is dominant throughout 
the specimen; in the transition between the these two neither elastic not creep 
deformations are dominant, and the strain field cannot be easily measured 
experimentally. In order to decouple plasticity and creep, one could unload the specimen 
periodically, removing the elastic component (which is time-dependent due to the 
reducing load and the spreading creep field). Alternatively, the moire data could be used 
to validate an elastic - plastic finite-element model of the specimen. This option was 
adopted (7), and with the model, the spread of the creep zone (defined as a 0.1 per cent 
creep strain) from a small area around the crack at 15 minutes to a zone extending to the 
uncracked border by 203 minutes was analysed and predicted (Figure 5) 

Conclusion 

In a creep - relaxation experiment, it has been shown that T * may be measured solely 
from the strain field parameter so long as the creep strains are limited to a zone close to 
the crack tip. When the creep zone grows beyond the inner integration contour, and 
establishes dominance across a specimen, the elastic and plastics strains need to be 
decoupled. This may conveniently be accomplished with an elastic - plastic finite element 
model of the specimen. 

It should be noted that the results achievable with a combined approach are greater than 
with either of the techniques on its own, since the FE model gained its credibility from 
the comparison with the experimental data. 

References: 
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Figure 4a 
Deformation Contours around Üie crack tip after 3 minutes 

(deformation contour interval - 1.05 micron, linear magnification 8.5x) 



Figure 4b 
Deformation Contours around the crack tip after 24 hours 

(deformation contour interval - 1.05 micron, linear magnification 8.5.\) 
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A = 0%  creep strain 

B = 0.005% creep strain 

C = 0.01% creep strain 

D = 0.05% creep strain 

E = 0.1 % creep strain 

F = 0.5% creep strain 

Fig.5 

Predicted creep contours after 25h 



TEMPERATURE INSENSITIVE MO IRE INTERFEROMETRY: A 
QUANTITATIVE INVESTIGATION. 

J. McKELVTE AND G. COLLIN, 
Depl of Mechanical Eng., University of Strath clyde, Glasgow, Scotland 

ABSTRACT: Fringe patterns produced in an allegedly thermally-immune moire 
interferometry arrangement, through severely thermally disturbed air, have been 
analysed quantitatively. It is found that the spurious strains are generally less than 
30^8. 

1.      Introduction 

Coherent-optical interferometric methods of strain measurement (holography, speckle 
and moire) have been usefully employed for almost thirty years now, but one of their 
limitations in common has been the effect of thermal non-uniformity in the medium 
through which the beams pass. 
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The resulting disturbance of the phase of the light, and concomitantly of the pattern of 
the interference fringes, has generally meant that the methods have been employed only 
for investigations at ambient temperature; (but including, importantly, cases where the 
object has been heated and then cooled again, - a circumstance in which there is no 
thermal disturbance of the beams). 
An example of a moire interferogram is shown in Fig la, and the effect of disturbing one 
of the beams using the turbulent air ahead of a small blow-torch flame is shown in Fig 
lb. 

A notable exception to this general avoidance of non-ambient work has been the 
work of Kang et al. ([1] & [2]). In that work, moire interferometry was used for live 
investigations of specimens under load in ovens at temperatures up to 1100°C, with the 
light passing into and out of the oven through quartz windows, with no particular 
precautions being taken to obviate or quantify any thermal disturbance. The resulting 
interferograms published in that work are quite astonishingly good, considering the 
conditions, but in any such environment there must always be a measure of doubt as to 
the value of the information extracted. Even the absence of fringe movement is not a 
sufficient condition for confidence, since the existence of steady-state disturbance due 
to, for example, thermal gradients, cannot be discounted 

A more considered approach to the problem is that of Hyer et al.[3], in which the two 
illuminating beams of a moire interferometer are created very near to the specimen by 
using a suitable prism beam splitter in very close proximity, with single-beam 
illumination. Any phase disturbance of the single beam up to the prism creates 
compensating disturbances in both incident beams. However, any thermal gradient that 
exists within the prism will cause phase disturbances that are not mutually 
compensating, although it is conceivable to monitor the extent of such gradients. 

In McKelvie, [4], there was presented an optical arrangement for moire 
interferometry that is of its nature immune to thermal disturbance for the purpose of 
strain measurement (but, importantly not for more general displacement measurement). 
The efficacy was demonstrated purely qualitatively in that work by illustrating an 
interferogram undisturbed and then disturbed, where it could be seen that although there 
was major change of the fringe spacing in the direction parallel to the grating lines, the 
spacing perpendicular to them (which is the quantity of major interest) appeared to be 
hardly affected. 

There was, however, no quantification of the disturbance, which is what this current 
work addresses. 

2.The Extent of the Problem 

A simple experiment was carried out to determine how serious the general problem 
might be. A raw He-Ne laser beam was set to pass through a small tube furnace held at 
1100°C. The position of the spot at a distance of 1 metre was monitored on a screen. In 
steady conditions the spot moved approximately 1mm, with a little obvious perturbance. 
In a typical moire interferometer (1200 lines/mm) such an angle of deflection of 0.06° 
would correspond to a spurious strain of 900us, or 2500us for the 600 lines/mm grating 
used by Kang. However, when a fan was used to blow air past the exit of the furnace 
tube, the deflection changed rapidly and erratically, and more severely, up to 4mm, 
corresponding to spurious strains of some 3,600|ie and IO.OOOUE respectively for the two 
grating frequencies. 

By comparison, using a grazing incidence angle of 88.5° (and the appropriate grating 
frequency of 1580 1/mm), the corresponding spurious strains are 28ue and 112ue for the 
0.06° and 0.24° deviations, respectively. 
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In the context of typical engineering strains encountered at these temperatures, such 
error, as an outside limit, is very acceptable. 

3.The Optical Arrangement 

specimen 

diffraction 
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■> 2 
camera 

BASIC OPTICAL ARRANGEMENT FOR MOIRE INTERFEROMETRY 
with schematic Indication of the effect of thermal disturbance 

Fig. 2 
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to beam 
recombiner 
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cylindrical 
lenses 

phase disturbances 
(blowtorch) 
Introduced into this 
beam 

Fig.3 



For the sake of completeness, the generic optical arrangement for moire interferometry is 
shown in Fig 2. There is some degree of immunity to thermal disturbance, imparted by 
virtue of the fact that two emerging diffracted rays that are brought together in the plane 
of the image pass through essentially the same intervening space, (because their angle of 
divergence is very small).. 

Their phases will be altered to the same degree therefore, so that there results a very 
substantial immunity to thermal disturbance in that space between specimen and camera, 
as is easily demonstrated. The difficulty arises in the two illuminating beams, whose 
phases will be altered the one quite independently from the other. These effects are 
indicated schematically by the actions of the prisms in Fig 2 

The essence of the solution is in arranging that the angles of incidence of the 
illuminating beams are close to 90° (i.e. grazing incidence). An analysis explaining the 
immunity is presented in McKelvie, 1997. 

Fig.3 shows the particular layout for the experimental work. Because no 
grating was to hand that corresponded to grazing incidence together with normal 
emergence for the He-Ne wavelength, the emergent beams actually diverged, as 
indicated, but were brought to interference using a beam recombiner. The 
thermal disturbance was introduced in one of the input beams by means of the 
blow-torch as used in generating Fig lb. A video was taken, and three frames 
are illustrated as Figs 4a, 4b, 4c. What appears to be the worst case, Fig 4c, was 
chosen for detailed comparison with the undisturbed original "zero" condition, 
shown in Fig la. 

4. The Fringe Analysis 

The fringes were manually digitised by estimating the y-positions of their centres along 
vertical lines spaced at 20mm intervals (the prints being 240mm long) in the x-direction. 
The fringe values, N, at these positions were entered into a Stanford Graphics package, 
and 6* order polynomials N= f ( y ) were fitted to the data Values of fringe order N on 
a matrix 

x = 0 to 240 (20mm intervals) 

y = 0 to 180 (10mm intervals) 
were calculated.   Contours of the constant N are shown as Fig 5, corresponding to Fig 
la. The agreement is seen to be generally good, but for the purpose of detenriining 
strains, fitting with a two-dimensional polynomial was found to be not sufficiently 
accurate. Instead, the values on individual columns (y=constant) were fitted with 4 

dN 
order polynomials, N=f(x), from which the derivative — was calculated. For the 

dx 
"deformed" case, (Fig 4c), it was not possible to fit N=f(x) for the whole y- range from 0 
to 180 due to a particularly powerful disturbance that can be seen running across the 
field, approximately half way up.   Instead, the curve-fitting was done up to y= 100mm, 
and then separately from y=100 upwards (with a small overlap region). The fringe 
contour interval was l/3000mm, (grating frequency 1500 lines/mm).  Knowing that, and 
the magnification (from frames in which the blow-torch appeared), the connection 

between — in the space of the print and — in the space of the grating is known. 
dx dx 

Since s, = — it was straightforward to generate estimates of the x-strains for each 
dx 

interferogram, and thus their differences, by differentiation of the fitted polynomials. 
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b) 

c) 
Fig. 4 



The resulting "errors" - that is the apparent strain field introduced by the very violent 
thermal disturbance - are plotted as Fig 6. It can be seen that generally the error rarely 
exceeds 30jxe except near edges, where the value may rise to over 60ns. (The highest 
error recorded was 137ns, occurring in the extreme left-hand bottom comer, where, in 
fact, there is no information at all in the undisturbed field). 

At edges of course, - and especially at corners - the curve-fitting algorithms would 
be rather more prone to error than elsewhere. 
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5.     Possible Application in Other Coherent Systems 

There are systems, in holographic and speckle interferometry, that are sensitive 
essentially to in-plane displacements, using two conjugate collimated illuminating beams 
- as in moire interferometry. Grazing incidence will endow the same degree of 
immunity on the incident beams in these systems as for the moire system, but the 
emergent beams present a different problem. That is because the interference that 
produces the displacement fringes arises not only between two beams, but, in effect, 
four, - the two in the first exposure and the two in the second - so that any change in the 
relative phases across the space in the interval between the exposures will cause 
distortion of the fringes. Any application must therefore employ rapid double-exposure, 
so that the thermal distribution has no time to alter, - but such circumstances would also 
obviate the need for grazing incidence anyway. 

6. Conclusion 

It has been demonstrated quantitatively that the use of grazing incidence in the 
illuminating beams renders moire interferometry immune within typical engineering 
acceptability, to the effects of even quite violent thermal disturbance of the surrounding 
space. The stratagem would not be of benefit in the analogous systems using holographic 
or speckle interferometry. 
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AN EXTENSION OF HOLOGRAPHIC MOIRE TO MICROMECHANICS 

CA. SCIAMMARELLA 
F.M. SCIAMMARELLA 
Illinois Institute of Technology 
Dept. of Mechanical Materials and Aerospace Engineering 
10 West 37* St. El bldg. Chicago IL, 60616 U.S.A. 

Abstract 

The electronic Holographic Moire" is an ideal tool for micromechanics studies. It does 
not require a modification of the surface by the introduction of a reference grating. This 
is of particular advantage when dealing with materials such as solid propellant grains 
whose chemical nature and surface finish makes the application of a reference grating 
very difficult Traditional electronic Holographic Moirf presents some difficult 
problems when large magnifications are needed and large rigid body motion takes place. 
This paper presents developments that solves these problems and extends the application 
of the technique to micromechanics. 

1. Introduction 

In fll one of the authors presented a method to measure displacements and to obtain 
strains in the microscopic range by using electronic holography. This method can only 
be used in static problems. The method-is based on repeated measurements of a 
specimen under the same conditions. This paper presents a different approach. A similar 
optical arrangement is utilized but the actual data processing method has been changed 
so that dynamic measurements can be performed. 

2. Review of the Foundations of the Method 

Recording holographic interference patterns via a CCD camera and the reconstruction of 
those patterns by electronic means are referred to in the literature as holographic TV, 
electronic holography, electronic speckle pattern interferometry. The patterns are 
recorded in the same way as in conventional lens holography with an almost in line 
reference beam. The fringe interpretation is the same as in conventional holographic 
interferometry. The basic equation of holographic interferometry is valid, 
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*=y(d.S) (1) 

where $ is the phase angle corresponding to a point in the region of analysis, X is the 
wavelength of the illuminating light, d is the displacement vector of the considered point 
and S is the sensitivity vector. In most of the currently utilized systems, the recovery of 
the displacement information is done by a method that is very similar to the method 
proposed initially by Leendertz [2] in speckle interferometry. This technique is based on 
the correlation of the speckle patterns corresponding to the initial or unloaded condition 
and the final or loaded condition. A complete description of this technique and examples 
of its application can be found in [3]. A computer version of this technique has been 
given in [4]. In [5] a different approach is presented. In [6] a procedure based on the 
precise relocation of a specimen by a control system, via fiduciary marks is presented. 

2.1. HOLOGRAPHIC MICROSCOPY 

The use of holography in microscopy has been the object of extensive studies. 
Holographic microscopy has also been applied to many different technical and scientific 
fields. The different applications shows the versatility of holography as a tool in 
microscopy, but at the same time they reveal the enormous difficulties there are to 
obtain optimum conditions. Most of the effort has been placed on eliminating the 
speckles to get adequate resolution. In the application that we are analyzing the 
information is encoded in the speckles, therefore we must preserve them. The resulting 
image will be of poor quality, thus the problem has to be approached in the following 
way A white light image of the region of interest must be recorded to obtain the 
features of interest. The images to measure the displacements must be recorded with 
coherent light. Afterwards the displacement field must be related to the surface features. 
The speckle visibility must be optimized to obtain the displacement information with 
optimum signal to noise ratio. The speckle visibility depends on many variables and 
requires a complex statistical analysis. However, an elementary analysis can be 
employed to get an insight on the main variables controlling fringe visibility. The 

equation r " "I2 

/(r')=   \k{r,r')A{ry^dA (2) 

.A -I 
expresses the intensity in the image plane of the recording lens system. In (2), r is the 
polar coordinate of a point in the object plane and r" is the coordinate of the same point 
in the image plane, the term A(r) ei+w represents the object field and k(r,r') represents 
the spread function of the imaging system. The spread function defines the area of the 
object that contributes to the image at a given point of the image. The other factor 
defines the amplitude and phase of the region of influence determined by flic spread 
function The amplitude variations depend on the changes in reflectivity and phase ot 
the surface. In turn, these quantities depend on the statistical properties of the surface. 
The larger the changes of phase and reflectivity are in the area of influence of the point 
under observation, the greater are the changes of intensity in the image, causing speckles 
with more contrast. 
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2.1.1. Basic Properties of the Microscope 
The basic properties of interest are: 
a) Displacement resolution 
b) Spatial resolution 
d) Magnification 
e) Depth of focus 
The displacement resolution depends on the configuration of the optical system. We are 
interested in the in-plane displacements consequently the double illumination technique 
is used. Since we have two beams that act as reference beams to each other, no 
additional reference beam is necessary. Calling 9 the angle of the beams with the normal 
to the surface that at the same time is the direction of observation we get, 

A</ = — (3) 
2sin0 

One important consideration in making microscopic measurements is the fact that since 
the region under observation is small, even if the strains are high, the displacements will 
also be small. We can see that the sensitivity is limited by 9 and by the wavelength of 
the light. The spatial resolution As is related to the numerical aperture (NA) of the lens 
system through a relationship of the form, 

As oc NA~l W 
The above equation indicates that to get the best resolution possible the NA must be 
increased. There is another requirement, depth of focus Az, 

Az oc NA' (5) 

This implies that if we increase the NA to get the best resolution possible we lose depth 
of focus. The transversal size of the speckle is given by, 

and the longitudinal size Al, 
Ap oc NA -1 

ALxNA -2 

(6) 

(7) 

3. Techniques to Obtain 
Displacement Information 

As shown in Fig. 1 we have a 
specimen that is illuminated 
coherently by four symmetrically 
oriented beams. The microscope 
focuses the surface of the 
specimen onto the CCD camera 
sensor. If we consider a region 
within the area of influence 

Hokxnoirc 
system 

I   microscope        CCD Camera 

Diode laser and beam divider 

Figure 1. Setup 
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defined by equation (2), the total light amplitude reaching this region is made out of four 
components. We have four beams, two in the x-direction and two in the y-direction. 
E, =E, e'* E'|X=Eix e"'*'» in the x-direction and E2y=E2y e' y, E'2y-E2y e y in the y- 
direction. In'these equations the E's represent the amplitudes of the illumination beams, 
and the 4's represent the phases in the same region. If we assume that the two 
orthogonal systems of illumination are non coherent (direction of polarization 
orthogonal to each other), the intensity gathered in the region will be,   • 

/l7-(*..y)= 1o +2I\x cos Wx(x>y)+2I2y cos Vy{x,y) (8) 

where Ilx=(E,,)M2y (E2y)\ Vx(x,y) = MÖ YyOuO = <fry */• Let us assume that a 
deformation has been applied to the specimen and that this deformation leaves the Es 
substantially unchanged and only causes phase changes. The second exposure results in 
an intensity distribution, 

I2T(x>y)=Io + 2Ilx cos [Vx&yhWxhlhy cos [^(x,y)+A^J    (9) 

where, 

A<j>x = 2nfpu(x,y) 

A<j>y=2n fpv{x,y) 

(10) 

(ID 

In the above equations fp = 2n sin Q/X and u, v are the components of displacement 
parallel to the x and y directions respectively. The intensities are converted into 
voltages, and without loss of generality can be considered proportional to the received 
intensities. A non-linear recording will produce [7] additional harmonics that can be 
removed by spatial filtering. By subtracting the signals to remove the background term 

we obtain, 
V{x,y) = K{2lJiCOSiifx{x,y)-cosWx{x,y)+ A^l] (12) 

+2l2y[cosy/y{x,y)-cos[yy{x,y)+Aty\\} 

Expanding the difference of the cosines, and taking the Fourier transform of (12), 
calling ^ and Ti the coordinates in the frequency space with the notations, 

V{4,ri)=FT[v{x,y)] (13) 

Ax{S,ri) = FT sin YX{x>y)+^r 

DX{^)-FT eint* sin — 
2 

And similar definitions for Ay ft ,ri)and Dyft ,T|) we get, 

(14) 

(15) 
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V^^^ll^AÄ^^D^nhhyW^n^Dy^rj)}   06) 

where ® indicates convolution. The quantities in brackets are the FT of random signals 
(speckles) convolved with a deterministic function that contains the displacement 
information. Our purpose is to separate the spectra of the functions that contain the 
displacement information from other spectral components. The approach presented here 
is to re-establish the correlation between the unloaded and the loaded images by a 
procedure that is a generalization of the optical technique described in [5]. 
With the notations, 

Fix =2Klxcos <fx(x,y) 

F& = 2KIlx cos [yx{x,y)+ Afx] 

Fiy = 2KI2ycos y/y{x,y) 

Fdy = 2KI2ycos [yy(x,y)+ A</>y\ 

(17) 

(18) 

(19) 

(20) 

we can write equation (12) assuming that a displacement dx is given to the loaded 
recording, 

^)=F«®5(x,y)-F^®5(x+^+^>®^(^)-F^®<5(x+Ax,y) (21) 

If we take the FT (the FT is indicated by the bar quantities) of (21), and replace the 
subtraction by the addition with a phase change of 7t we obtain, 

V(g,7}) = Fu + Fdxe
ir + Fiy + Fdye

lr (22) 

if we neglect the effect of the displacements caused by the deformations Ax= dx and the 
argument Y is, .- 

y = 27iaxq + 7t (23) 

Then by squaring (22), 

(24) [v(t,T]f=If(t,71)[\ + Ccosr] 

where, 

and 

i-      -   |2    i- 
H=\Fix + Fiy\  +\Fdx + Fdy\ 

Fix + Fiy\\Fdx + Fdy\ 
C = 

\Fix + Fiy\  +\Fdx + Fdy\ 

(25) 

(26) 
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H (E„r\) is a random function (speckle pattern) and C is a visibility term that provides the 
visibility of the fringes formed in the frequency space [8]. If we take the FT of (24), 

iÖ =Wn)s{o,o)+\cH&TJ\s{dx,o) (27) 

To illustrate the formation of fringes in the frequency space the orthogonal patterns 
shown in Fig.2 were created. An initial image was recorded and then separately two 
recordings were made with shifts in the x and y directions. The FT's of the subtracted 
images were computed and then added bringing forth Fig. 2. If we take the FT of the 
pattern in Fig. 2 we get the spectrum of the fringes in the frequency space, Fig. 3. The 

Figure 2. Fringes in FT space. 

Fi «'- 
Figure 3. Spectrum of the fringes. 
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distances of the spectrum peaks in the x and y directions to the origin of coordinates 
provide the displacements dx and dy. If the image 
in Fig. 2 is filtered, we get Fig. 4 that displays the 
pattern of fringes without the background noise. 
Each time that the fringes have a minimum, for 
example in the x-direction, 

£   = 
2«  -1 

2 d Y 

(28) 

the patterns in the initial and in the loaded 
conditions are re-correlated as it can be concluded 
from equation (22). When the 
relationship is satisfied, Fig. 5, 

following 

Figure 4. Filtered system of fringes. 
fo  =$o 

1 

2d, 
(29) 

where f0 is the central frequency of the spectrum of the displacement fringes, the 
spectrum is located in its correct position. At any other minimum the fringe pattern will 
be shifted of a certain frequency shift A^ with respect to the central frequency f0 as 
shown in Fig. 6. If we select a displacement such that the correlation occurs at the 
frequency £i, then we filter the spectrum at this frequency we get, 
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y{^y)=Fix-F(bfi 
TjOheX (30) 

and 

v(x,y)=2KI]x{costyx(x,y)-cos[iyx(x, y)+Afa + 2it^x\\       (31) 

Calling ß = A<J)X+ 2rc A*x, after squaring we get the signal displayed in the monitor, 

2,2   -2 V2(x,y)=8K2lfxsm Wx (*>>0- 
Aß [l - cos ß] 

If we integrate the speckle pattern in the x-direction and use the notation 

7 = 4^/2 

the signal has the form, 
V2(x,y)= /[l-cos/?] 

(32) 

(33) 

(34) 

We have a pattern of fringes that contains the displacement information in the x- 
direction and have a visibility of one. The fringes will have minima at points where 
ß = 2nn and maxima every time that that ß = (2n+l) n. These fringes contain a carrier 
frequency and to remove it one must know the central frequency of the spectrum of the 
fringes. If one has an estimate of the central frequency one can use two frequencies f^ 
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Figure 5. Filtering in the FT space. 

*1 

I  e _ 
^0=4 

A^ 

(a) 

"* 

dxo=l/2^0 

I H 
-f * 

dxl=l/2(^A^ 

(b) 
Figure 6 (a) Frequency space. Spectrum corresponding to the fringe in the physical 
space, (b) FT of the frequency space. Spectrum corresponding to the displacements in 
the physical space. 
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and f2 above and below the central frequency and by successive steps reach f0 taking into 
consideration that the phase will remain stationary at f0. 

3.1. ALTERNATIVE TECHNIQUE TO RECOVER THE DISPLACEMENT 
INFORMATION 

In the preceding sections, the spectrum of the displacement fringes was recovered by 
shifting the loaded image with respect to the unloaded of a given amount. An alternative 
technique for recovering displacement information can be used in the case when large 
magnifications are utilized and the individual speckles cover several pixels. This 
technique is carried out by means of fiduciary marks. These marks allow the two 
images to be re-positioned within one pixel, and thus the recovery of the displacement 
information can be achieved. The phases of the individual speckles in the unloaded and 
the loaded positions are determined [9]. The subtraction of these phases will yield, 

[Vx{x + y)+ Atx{x,y)]- vx{x,y) = A&fcjy) <35> 

The phase differences are encoded on a carrier, 

K*.>-)=U1+cosN/«*+^J <36> 
where f« is the carrier frequency in the x-direction. The spectrum of the displacement 
fringes is encoded in the fringes and can be recovered by filtering and removing the 
carrier. 

4. Applications 

Our example deals with strain measurements carried out on propellant grain tensile 
specimens. A system for testing tensile specimens was designed and built. The system 
consists of Fig. 1: a) a loading frame with micrometric motions in three orthogonal 
directions, b) an optical fiber interferometer, c) a microscope connected to an electronic 
system. The fiber optics interferometer consists of a solid state laser whose output goes 
to four fibers that produce four collimated beams to measure displacements in two 
orthogonal directions. The fibers are not polarization preserving fibers but light 
polarization was adjusted by bending the fibers and separately matching the polarization 
of the horizontal beams and of the vertical beams. The observation system uses a 
microscope and it is possible to perform measurements in the range of few hundreds of 
microns up to 3 mm, maximum size of the area illuminated by the fiber optics system. 
The basic characteristics of the illumination system are as follows: a) angle of 
illumination 9 = 45°, b) wavelength of laser X = 0.635 urn, c) displacement sensitivity 
Ad = 0.447 urn. Fiduciary marks on the specimen surface were used to restore the 
position of the loaded image. Many measurements were carried out on these specimens. 
For this paper, we are going to concentrate on the micromechanics measurements. 
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Propellant grains are a mixture of a rubber matrix with crystalline particles embedded in 
it. A binder is added to the particles to insure the adherence of the particles to the 
matrix. The surface of the propellant is extremely rough and the numerical aperture of 
the lens (NA) in the measurements carried out in this work was limited by this 
circumstance.   The large particles in the propellant are about 400 urn in size and of 
prismatic shape. Measurements were carried out at two different magnifications. In the 
first magnification the pixel size in the y-direction was Ay = 1.83 urn and in the second 
magnification applied Ay = 0.834 urn. The NA for the second group of measurements 
was NA = 0.0253.    The speckle size was determined in three ways, directly by 
measurements in the image plane, by computation and by measuring the diameter of the 
halo in the frequency space. The three determinations yielded very close numbers 
around 15 urn for the pixel diameter. For this study, measurements were performed in a 
region of a tensile specimen where a particle was present. Since the particle has Young's 
modulus that is four orders of magnitude bigger than the rubber matrix, the particle can 
be considered as rigid. During the computation of the strains, the particle was 
considered as an internal boundary. Fig. 7a shows the strains in the axial directions for 
the image filtered at the central frequency determined by successive approximations, for 
the stress level in the tensile specimen of a = 78 KPa. Fig. 7b shows the results of the 
same measurement by re-correlating the image using a displacement that satisfies 
equation (29). Fig. 8a shows the strains determined by introducing a displacement that 
moves the spectrum of the signal to the 12 harmonic. Fig. 8b shows the strains when the 
spectrum is displaced to the 16th harmonic. In view of the difficulties involved in 
performing micromechanics measurements, the different patterns agree reasonably well. 
Fig. 9a shows the region around the particle for the stress level a = 39 Kpa.  The strains 
in this region were determined by re-correlating the spectra of the unloaded and the 
loaded recordings, obtained with the magnification yielding Ay = 1.83 urn.   Fig. 9b 
shows the strains in the same region obtained with a different magnification (Ay= 0.834 
Urn). The two strain distributions agree well. To get the strain distribution shown in Fig. 
9b the phases of the unloaded and the loaded images were computed, subtracted and 
then the phase difference was encoded in a carrier. The strains were obtained by 
differentiating the carrier [9] and removing the strain equivalent to the carrier frequency. 
In all the previous cases of fringe analysis the region of the gradients between the matrix 
and the particle are poorly resolved. It is not possible with the equipment at hand to have 
a broader view of a region and at the same time to obtain accurate spatial resolution if a 
steep gradient is present. The CCD camera has sensors at a given distance, so the 
frequency resolution in the frequency space depends on the size of the regions analyzed. 
To illustrate this point two regions of the particle-matrix boundary are analyzed. At the 
side of the particle the strain parallel to the particle (axial strain), must be zero at the 
surface of the particle and then it should build up to the value in the field. In Fig. 9 b the 
analyzed section is shown. Fig. 10 shows the first 50 urn of the boundary of the particle 
matrix. Fig, 11 shows the strains along the indicated cross-sections. At the end of the 
particle there is continuity of the stress and therefore the strain must jump to the 
prevailing value of the matrix, Fig. 9b shows the area that is analyzed. Fig. 12 shows the 
details of the region and Fig. 13 shows three cross sections. 
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Figure 7. Strains in the y-direction (longitudinal direction) 
in a region of a particle embedded in a rubber matrix. 

(a) Filtered image at the frequency &« 8 harmonic. 
(b) Filtered image (shiBed 30 pixels) U\" 8 harmonic. 
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Figure 8.    (a) Filtered image (shifted 20 pixels) fi - 12 harmonic 
and removing the carrier fringe with (A"1 harmonic) 
to obtain U" 8 harmonic, 

(b) Filtered image (shifted 15 pixels) fi - 16 harmonic 
and removing the carrier fringe with (8* harmonic) 
to obtain £- 8 harmonic. 
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Figure 9. Strains in the y direction o, = 39 kPa 
a) Obtained by «correlation and filtering Ay = 1.83 um. 
b) Obtained by speckle phase subtraction and filtering 

Ay=0.847nm. 
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Figure 10. Strains at the right boundary of the particle region shown in Fig. 9b. 

Figure 11. Cross sections of the strain distributions shown in Fig. 10. 
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figure 12. Strains at the lower boundary of the particle section shown in Fig. 9b. 

Figure 13. Cross sections of the strains shown in Fig. 12. 
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5. Discussion and Conclusions 

The presence of large speckles in the field has a significant impact on the data 
processing particularly if the speckles have low modulation or if there are sudden 
changes of phase. These features introduce phase errors that are averaged by the filtering 
process. More work needs to be done to introduce standard procedures required to 
overcome the different problems that are encountered. In spite of all the obstacles that 
are posed by the characteristics of the propellants surface, valuable micromechanics 
information has been gathered and some of the obtained results are confirmed through 
data obtained by other means. 
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Abstract 

When a specimen surface carrying a high-frequency line grating is examined under a 
scanning electron microscope (SEM), moire fringes are observed at several different 
magnifications. The fringes are characterized by their spatial frequency, orientation, 
and contrast. These features depend on the spatial frequency mismatch between the 
specimen grating and the raster scan lines, the diameter of the electron beam, and the 
detailed topography of the lines on the specimen. 

A mathematical model of e-beam moire" is developed that depicts the spatial 
dependence of the SEM image brightness as a product of the local intensity of the 
scanning beam and the local scattering function from the specimen grating. Equations 
are derived that show the spatial frequency of the moire" fringes as functions of the 
microscope settings and the spatial frequency of the specimen grating. The model also 
describes the contrast of several different types of moire" fringes observed at different 
magnifications. The different types of fringe patterns are divided into categories 
including: natural fringes, fringes of multiplication, and fringes of division. 

1. Introduction 

When a specimen surface that carries a regular array of lines is examined under a 
scanning electron microscope (SEM), moire" fringes can be observed at several different 
magnifications. Some confusion can arise in the interpretation of the different fringe 
patterns, because the spatial frequency of the moire" fringes changes with mismatch, 
rotation, a multiplication phenomena, and a division phenomena. In this paper, we first 
demonstrate these different fringe patterns and then explain their formation based on a 
Fourier series representation. 

Contribution of the U. S. National Institute of Standards; not subject to copyright in the U. S. 



Optical moire" fringes, either geometric or interferometric, are widely employed in 
experimental mechanics. The classical treatments of geometric moire by Parks[l], 
Durelli and Parks[2], and Theocaris[3], and the descriptions of interferometric moire" by 
Post [4], Graham [5], and McKelvie [6] are most helpful in interpreting fringe pattern 
formation in e-beam moire\ However, certain features of the phenomenon of electron 
beam moire1 were not anticipated in these classic treatments of optical moire\ These 
features occur because no actual reference grating exists in electron beam moire\ 
Instead, the electron beam raster scan replaces the reference grating. 

The e-beam raster scan is similar in may respects to the video raster scan employed 
by Morimoto [7] in forming moir6 fringes using low frequency specimen gratings. 
Kishimoto [8] recognized the similarity between the video and SEM raster scans and 
was the first to report the use of e-beam moire" fringes for experimental mechanics. 
However, neither Morimoto nor Kishimoto discussed the many fringe patterns that may 
be observed when scanning lines are employed as the reference grating. With the 
controls available on a typical SEM, it is possible to vary the e-beam diameter, the pitch 
of the raster scan, and the angle between the scan lines and the grating lines. All affect 
the fringe pattern. 

We develop a mathematical model of e-beam moire" fringe formation that allows us 
to reproduce and extend certain results previously derived for optical moir6. The model 
is based on two postulates used in treatments of optical moire [5]: 

1. The spatial dependence of both the pattern of the scan lines and the specimen 
grating can be described using Fourier series. 

2. The SEM image can be represented numerically as a set of intensity values given 
by the product of the scattering power of the specimen grating and the intensity 
of the scanning lines. The spatially extended interaction of the e-beam with the 
near-surface region of the specimen, due to back-scattered and secondary 
electrons, is incorporated as a contribution to the width of the scanning lines. 

Based- on these postulates, a model is derived that concisely describes natural moire" 
fringes, fringes of multiplication and fringes of division. Experimental examples are 
demonstrated. The model is well-suited to determine the fringe contrast and the fringe 
shape as functions of the raster scan pitch, the scan line width and specimen grating 
parameters. 

2. Observation of Specimen Gratings and e-Beam Moir6 Fringes 

Several high-frequency gratings (2.5 to 10 line/^m) were written on a brass specimen 
using the methods described in [9]. A macroscopic view of the small areas written with 
different frequencies and different e-beam exposures is presented in Figure 1. A line 
grating with a frequency fg - 5 line/um at 55.000X is presented in Figure 2. Depending 
on the effectiveness of the process used to fabricate such lines, they may appear in the 
SEM display as high-contrast stripes of black and white, as shown in Figure 2, or as low 
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contrast stripes represented by intensity modulations in a gray field. Local imperfections 
in the specimen surface and in the grating produce irregularities in the brightness of the 
image. Additional imperfections are generated by the imaging process even though the 
SEM image is recorded at a slow scan rate. 

Figure 1 Several line gratings written with different frequencies and exposures on a brass specimen. 
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Figure 2 SEM image of a line grating with p,- 220 nm at a magnification of 55.000X. 

When a grating with fg = 5 line/^un is observed, moirS fringes appear at several 
different magnifications from 300 to 3000 X. Typical moire patterns are illustrated in 
Figs. 3 to 5. We have divided these fringe patterns into three categories based on the 
relative sizes of the spatial frequency of the specimen grating and the raster scan. Moire 
fringes of division, where fg > fb, are presented in Figure 3. Natural moire" fringes, 
where fg = /», are shown in Figure 4. Moire" fringes of multiplication, first observed 
optically by Post [8], are also generated with e-beam moire" when/* >fg. Multiplication 



by a factor of three is depicted in Figure 5. 

Figure 3 Moirf fringes of division on with p, - 200 nm at a magnification of 500. 

v-£>.-H>.v,.-V,*?i-.-s'.iV?'".* 

Figure 4 Natural moire fringes with p, - 200 nm at magnifications of 950 and 1000. 

Figure 5 Moiri fringes of multiplication With pf - 200 nm at a magnification of 3000. 

3. Theory of e-Bearn Moire" Fringe Formation 

We introduce a theory to describe the formation of the several different types of moire" 
fringes observed in a SEM. The theory is similar to that used to describe the formation 
of fringes in optical geometric moire\ Fourier series representations describe the SEM 
raster scan, the specimen line grating, and the moire" fringes. The results are interpreted 
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to explain the occurrence of fringes classified as natural, multiplied, and divided. 

3.1 THE SEM RASTER SCAN SYSTEM 

The image observed in a SEM is produced by scanning the specimen grating with an e- 
beam raster scan. We locate a point in this image by its coordinates (x, y). The e-beam 
is scanned continuously across the imaged field in the x direction. The e-beam scan 
lines are equally spaced, with pitch p* in the y direction. The magnified image, viewed 
on the CRT display, has a nominal size of 90 mm in the y direction which is related to 
the size of a common photomicrograph. In a SEM the raster pattern is always aligned 
with the viewing screen and the camera frame, so the x-axis is horizontal and the y-axis 
is vertical in all SEM images. 

The specimen carries an array of lines extending in the ± x direction, spaced equally 
with pitch pg in the y-direction. The reciprocal of pg is/g) the spatial frequency. The e- 
beam and specimen coordinates may be rotated with respect to one another by a control 
on the SEM 

The number of scan lines used to form the image can be set at various values. 
Typical nominal settings are 500,1000, or 2000 scans to produce an image. The images 
in Figs. 3 to 5 were made with 500 lines. Possible magnification Values range from 10 
to 300,000. Because of the design of most SEMs, only discrete values of the 
magnification are available. As a consequence, it is usually not possible to achieve a 
null-field moire" fringe pattern. 

The pitch of the electron beam raster scan lines, pb, depends on the magnification, 
M, the nominal image size, S, and the number of raster scans R forming the image: 

Pb = S/MR (1) 

For example, with 500 lines per image, a nominal image height of 90 mm, and a 
magnification of 1900, the scan pitch pb is 95 nm. 

The effective width of the electron beam scan lines depends on the actual e-beam 
diameter and the interaction of the beam with the specimen surface. Beam diameters of 
5 to 20 nm are reported in the literature and in the specifications for a typical SEM. 
Attainment of very small beam diameters (10 nm) requires very low beam currents, a 
well-aligned microscope, a small aperture and extremely sharp focussing. The 
interaction zone diameter depends on the specimen material and the electron beam 
energy (accelerating voltage). We believe a value of 15 to 30 nm is typical for the 
effective width of the raster scan lines used in this study. 

The specimen gratings are formed by etching thin slits in a polymeric film about 
100 nm thick. The frequencies obtained vary from 2.5 to 10 lindym. The lines (slits) 
appear as dark stripes in the image and the flats between the slits appear as light stripes. 
In our densest gratings, the width of the slits and the flats is approximately equal. A 
y-direction trace of the image intensity shows a profile with gradual, rather than abrupt, 
changes in the image intensity. It appears that our gratings are between "phase grating" 
and an "amplitude grating" according to the usage of these terms in optical moire\ 



3.2 FOURIER REPRESENTATIONS OF THE GRATING AND SCANNING LINES 

We follow the approach introduced by Sciamarella [8] for optical moire\ and 
assume the local intensity of the image proportional to the product of the local scattering 
power of the specimen grating and the local intensity of the e-beam scan line. The 
scattering function G(y) for the specimen grating is represented by a Fourier series: 

G(y) =~+Y.S„^5(2nnfty) (2) 
■* n-l 

where the g„ are Fourier coefficients and/g is the spatial frequency of the grating lines. 
After deformation, the specimen grating frequency fg can vary with position over the 
specimen. However, in this treatment we simplify the analysis by considering only 
deformation fields that produce constant strain over the local region of interest. The 
frequency fs represents the current value at the time of image formation, which is 
usually different from the original value. 

The intensity of the e-beam scan lines B(y) is also represented by a Fourier series: 

B(y) - T+ Z *-cosQ**f>y) (3) 

where the bm are Fourier coefficients andyi is the spatial frequency of the raster lines. 
The moire" pattern M(y) is represented as the product of the raster function and 

the grating function: 

M(y) = B(y)G(y) (4) 

Substituting Eqs. (2) and (3) into Eq. (4) and arranging the products of the cosine terms 
into sum and difference cosine functions gives a relation of the form: 

M(v)=C + F(y)+S(y)+£>(v) (5) 

where C = gobolA is a constant. The functions: 

F(y) - (bo/2)I^„cos(2Txnfgy)+(go/2)I.bmcos(2Tvnfby) 
S(y) = lE(gJ>J2)cos2n(nft+mfb)y 

exhibit a frequency that is too high to be observed. The difference function: 

D(y) = XZ(gnbJ2)cos2n(nfrmfb)y 
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is the term in the double series expansion that produces the image observed and 
identified as the moire fringe pattern. We simplify. Eq. (5) to give: 

M(y) = C, + f) £ g„bm cos [2n(nft - m ft)y] (6) 

where Ci = C + F(y) + S(y) is the intensity of the background. 
The result is similar to that obtained in optical moire\ When the magnification 

yields moire" fringes, the grating lines cannot be clearly imaged. The coefficients g„ in 
the specimen grating function G(y) decrease rapidly with n because of the topography of 
the grating. The coefficients bm of the scanning beam raster function B(y) do not decay 
as rapidly with increasing order m of the expansion. 

3.3 NATURAL MOIRE FRINGES 

The simplest condition for fringe formation in optical moire is the near-match condition 
when fg =fb. In e-beam moire\ we refer to fringes formed under this near-match 
condition as natural fringes. Because only discrete values of magnification are available 
on our SEM, it was not possible to achieve a perfect null field, where ft - fb and the 
pitch of the moire" fringes pm becomes infinite. 

The frequency/m of the moire" fringe function M(y) is determined by considering the 
first term in Eq. (6) (n = m = 1) for the near match condition. 

/.-/,-/» CO 

In Eq. (7), negative values of the moire" fringe frequency are allowed, because moire 
fringes are formed both forfg >fb and foxfg <fb. 

Consider small uniform longitudinal strains along the y direction, relative to the 
ideal initial condition where/« =/» and 9 = 0. Equation 7 implies that the tensile strain 
s is given by 

s = Lm.  (8) 
r/»+/.; 

The periodic form of Eqs. (2) to (6) permits us to adopt a vast body of previous 
developments to interpret e-beam moire" fringes. Some familiar wave phenomena have 
analogs in SEM images of line gratings. For example, it is clear from Eq. (7) that the 
moire" fringes are analogous to the beat frequency due to two pure sound tones of slightly 
different frequencies. 

The contrast of the natural moirt fringes is determined primarily by the amplitude 
term gib,/2 although higher order terms also affect the contrast. Higher order 
harmonics of the fringe frequency occur for m - n = 2, 3, ...etc. These harmonics distort 



the pure sinusoid of the fundamental and degrade the contrast of the image. Other 
higher order terms occur when n^m and produce signals with a very high frequency 
which can be disregarded except for their detrimental effect on contrast. 

3.4 FRINGES OF MULTIPLICATION 

Post [11] showed that fringe multiplication occurred in optical moird when the spatial 
frequency of the reference grating was a near multiple of the spatial frequency of the 
specimen grating. The same fringe multiplication occurs in e-beam moird. We express 
the spatial frequency of the scan lines, following the notation introduced by Post [11] as: 

f>-ß(l + *)f, (9) 

where ß is a positive integer and X is a small fraction. Substituting Eq. (9) into Eq. (7) 
shows that the spatial frequency of the moird fringes is: 

f„=[n-mß(l + X)] ft = [(n. ßm) -mXß] fg (10) 

Moire" fringes may be observed when n = ß m; then/m becomes: 

f.--mXßft (11) 

The amplitude of the moire" fringe terms in Eq. (6) is given by gjbjl. Since ß is 
typically an integer from 2 to 5, n = ßm is always greater than one. Maximum contrast 
requires m = 1; hence, fringes of multiplication occur when we match the fundamental 
frequency of e-beam raster scan with the second, third, etc. harmonics of the grating 
function. Difficulties in obtaining high contrast in attempts to employ fringe 
multiplication are due to the use of decreasing Fourier amplitudes of higher harmonics 
of the grating function. To illustrate this important result, let ß = 2 and consider a 
specimen grating that is represented by a symmetric square wave (a grating with bar 
width equal to space width). Since g2 = 0, the coefficient of the second harmonic for a 
square wave, contrast vanishes and these fringes of multiplication cannot be observed. 

These results show the importance of the grating scattering function for the contrast 
of fringes of multiplication.   A grating with narrow lines and wide spaces exhibits 
stronger even harmonics than a balanced grating with equally wide lines and spaces. 
However, for all shapes, except the periodic delta function, the general rule is that the 
coefficients gn decrease rapidly with increasing order of the harmonic. 

3.5 FRINGES OF DIVISION 

Moire" fringes of division also occur when the specimen grating frequency is a multiple 
of the scan line frequency. Fringes of division are commonly observed at low 
magnification settings on the SEM, when pb is larger than pt. The formation of the 
fringes of division and their contrast is evident from Eq. (6). Consider an observation in 
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the SEM with a frequency relation given by 

The frequency of the resulting moire" fringe pattern is obtained from Eq. (6) as: 

fm = [{n-mlß)-mMß]fg (13) 

The moir6 pattern can be observed when n - m/ßand Eq. (13) reduces to: 

fM--m\fglß (14) 

Since ß is an integer typically from 2 to 5, m = ß n is always greater than one. This fact 
shows that moire" fringes of division are formed by combining the fundamental 
frequency component of the specimen grating with higher harmonics of the e-beam 
raster pattern. The e-beam scan lines that are produced at low magnification have 
relatively high coefficients b„ for n as large as 10. 

4. Conclusions 

The formation of e-beam moire" fringes in a SEM can be described with a model 
based on a Fourier series representation of the specimen grating line function G(y) and 
the raster scan line function B(y). The moir6 function M(y) is the product of these two 
functions. The model describes the variation in the spatial frequency fm of the moire" 
fringes with the magnification used in producing the image. It also provides a means 
for estimating the contrast of different moir6 fringe patterns that are observed in the 
SEM. The spatial frequency fm can be used to measure the spatial frequency fg of the 
specimen grating to determine displacements. 

The sensitivity and resolution of measurements made with e-beam moire" are limited 
by the frequency of the specimen grating. Fringes of multiplication offer enhanced 
displacement sensitivity per fringe, but require that the specimen grating be fabricated 
with a slit-ridge ratio that produces substantial higher order Fourier components. 
Fringes of division are observed as easily as natural moirö fringes because the raster 
scan lines at low magnifications exhibit significant Fourier coefficients for the higher 
order terms in the expansion. Fringes of division are useful because they permit a larger 
field of observation. 
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1. Introduction 

The stress freezing (SF) method has been widely known as a simple and useful photoelastic 
technique applicable to various kinds of experimental stress analysis problem, particu- 
larly for three-dimensional problems. 

To accomplishment of complete SF method, more careful attention should be paid 
to the temperature conditions of SF cycle, because their thermoviscoelastic effects 
during heating and cooling process leading the non-uniformity of the temperature distri- 
bution in the whole model are very serious, since the model made from polymeric mate- 
rials has generally remarkable time and temperature dependent characteristic properties. 
Additionally, the strain sensitivity of the optical property of thermosetting resin used for 
SF model is considerably small in rubbery state than in glassy state. Therefore, SF 
model should be much more distorted comparing with the general photoelastic model. 
Thus, SF method may lead finally to experimental analysis error, and gives considerably 
large effect upon accuracy of three-dimensional stress analysis using the SF method. 

By the way, the thermosetting resin used in SF method is very soft but has high stress 
sensitivity at higher temperature than the glass transition temperature, whereas in the 
range of temperature below the glassy transition temperature, the polymeric resin is 
very hard and has low stress sensitivity. Furthermore, not only the mechanical but also 
optical properties of resin in me vicinity of glass transition temperature show a remark- 
able time and temperature dependence, that is, so-called photoviscoelastic behavior. 

This paper intends to propose a new technique for finding the most suitable holding SF 
temperature and optimizing the freezing cycle with an aim to improve SF method, 
based on the quantitatively character of linear-photoviscoelastic behavior1'3 of model 
material. Thus, the estimating functions including the strain sensitivity mentioned 
above, are newly defined from view points of the photoviscoelastic behaviors of the 
material. And, their availability will be verified theoretically, together with experimental 
results obtained from 4-point bending test of epoxy resin beam. 
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2. Estimate Functions for the Stress Freezing Method 

Figure 1(a) shows two kinds of ordinary temperature cycle regarding SF cycle, where 
both maximum temperatures T. are higher than glassy transition temperature T .and T. 
is . the room temperature. Figure 1(b) shows the principal stress difference cr.-a2, 
produced in a model due to application of a constant load. Similarly, Fig. 1(c) and (d) are 
respective changes of the principal strain difference e,-e, and of birefringence n As 
easily understood, the principal stress difference at any point in the model, which was 
caused by applied loading, disappear at removal of this applied load. However, both 
principal strain difference e, -E, and fringe order n per unit path of light still show time 
dependent variations with time as seen in Fig. 1 (c) and (d). Therefore, even after finishing 
one cycle of SF procedure, then removing a constant applied loading, not only the 
frozen birefringence n£ but also frozen principal strain difference are left in the model. 
This is basic concept of Stress Freezing method, in which the values n, of frozen fringe 
are used in analysis of stress or strain similar to fringe order from an ordinary 

(a) 

"1     " 1 . 

»i 

0 
(b) 

V 

(d) 

Fig. 1 Stress freezing procedure 
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photoelasticity.  Thus, by use of SF method,  experimental analysis of three-dimen- 
sional problems become possible. 

Now, let us discuss the effect of SF temperature as to the following two cases. The 
first case is shown as the thick lines in the Fig. l(a)-(d), in which the model used is 
loaded at a sufficiently higher temperature Tfa than the glass transition temperature T 
of the material, and then is cooled down very slowly to the room temperature lower than* 
T , at which the model material is in the glassy state. In this case, stress and strain fields 
a^all point in the model make response for a given loading without any time lapse, so 
that magnitudes of both principal stress difference oy<sz and strain difference CJ-E2 are 
of time independence. The similar situations may be said as for birefringence n pro- 
duced in the model. Since the external loading for SF is removed from the model when 
SF procedure is complete, both the principal strain and birefringence somewhat may get 
down as seen in the Fig. 1(c) and (d), because of balance of external loading. In ordinary 
SF method, the principal stress difference Oj-c^ by loading is experimentally analyzed 
by using the nf 

In the second case shown as the thin lines in Fig. 1, the holding temperature Tfcis in 
so-called time and temperature dependent viscoelastic region. Both the principal 
strain difference e.-e, and the birefringence n increase due to creep with time even for 
constant loading to the model. And it can be also found that the e as well as the frozen 
birefringence nf reduced after finish of SF procedure may be changed to some extent. 

It is very essential that, to make improvement of high accuracy in the SF method, 
the model material used has linear relations between stress, strain and birefringence is 
held even during all procedure. Also, it is a matter of course that it has a large ultimate 
strain strength in the viscoelastic region Furthermore, besides these requisites, the fol- 
lowing three items should be needed for improving the accuracy of SF method. 

(1) The frozen birefringence produced should be as large as possible within limit of 
allowable distortion of model. 

(2) The constant applied load oQ leading to the principal stress difference ox-a2 

produced wants to be as large as possible under the condition of the above item (1). 
(3) The frozen birefringence should be as large as possible to make the analysis easy 

with better accuracy. 

The above requisites are not always possible to be satisfied simultaneously, so that 
careful choice of which items should be taken preferentially is most essential, although 
their preference bases depend upon aims of experimental circumstances. To do this, 
introduction of the following three "estimation functions" are very useful, which are de- 
fined as, 

(1) 

(2) 

(3) 

fel-   
Emu 

ki = 
ao 

6 max 

jfc3 = 
nf 

ao 
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Among of them, the first function kj represented by equation (1) has been known as 
"Figure of Merit", which has widely been used for the three-dimensional stress analysis 
by SF method, but the rest two functions k2 and 1^ are newly defined and proposed ones 
in this paper. 

3. Theoretical Consideration of New Functions Based Photoviscoelasticiry 

Assume that the model material shows a linear-photoviscoelastic behaviors and behaves 
thermo-rheologically simple, and at the same time, has the same time-temperature super- 
position principle is held for the both optical and mechanical characteristics. 

A three-dimensional model body made by the linear-photoviscoelastic material 
is held for sufficiently long time without any constraint at a high holding temperature Th 

at which the material shows viscoelastic behavior. At this period, no stress, no strain 
and no birefringence exist. The load is applied to this body at time t=0, then cooling 
down very slowly to the cooling temperature T , at which the material is in glassy state. 
Therefore, there is no temperature distribution in the model during cooling process. 
The initial loading is kept through this cooling. The stress distribution due to a constant 
load will not change with time and also the directions of principal stress, principal 
strain and polarization of light coincide completely with each other at any point in the 
model and do not change with time. 

In this case, the fundamental equations between stress-strain-birefringence of the two- 
dimensional photoviscoelastic body of which the temperature changes uniformly with 
time, can be expressed by the following hereditary integral equation by using the linear 
photoviscoelastic theory and the time-temperature superposition principle. 

ei(x,0-£2(x,f) - f0Dc{t' -X',TO)--[OI{X,T)-CT2(x,T)]dT        (4) 

and 

n(x,f)-/JCc(f' -T',7O)—[ai(x,T)-a2(x,T)]dT (5) 
ux 

where t' is reduced time calculated by the following relation 

,    j       d« 
'   -io^fTY.^I (6) 

»fa*«)] 
in which TQ is the reference temperature, a_- is the time-temperature shift factor with 
respect to T», and D (f), C (f) are creep birefringence-strain coefficient and creep com- 
pliance, respectively, both of which should be experimentally determined by mechanical 
and optical characterization The transient uniform temperature T(t) and load W(x,t) are 
loaded in photoviscoelastic model used. The pulse shaped principal stress difference 
cr. is applied to any point in model shown in Fig. 1(b). And the principal strain 
difference e.-e, and birefringence n are produced at this point. From equations (4), (5) 
and (6), the maximum strain E     and the frozen birefringence nf are given by 

e m*x = Dc(t\ To)ao 

max 

(7) 
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ru = (Cc(t',To)-Cc(0,To))ao (8) 

Therefore, the estimate functions kj,k2 and kg can be expressed from equatins(l), 
(2) and (3) as follows, 

a{t',To)-a(0,To) (9) 
kl~ Dc(t',To) 

ki T^ r (10) 
£>c(r',7o) 

k3-Cc(t',To)-Cc(0,To) (H) 

If two photoviscoelastic coefficients Dc and C are obtained previously before SF 
procedure, then it is able to find out theoretically the most suitable temperature and 
loading condition in SF method, by using three estimate functions. 

4. Theoretical and Experimental Verification 

By using epoxy resin of which two photoviscoelastic coefficients were obtained, the 
optimizing of the SF method is analyzed theoretically and is clarified experimentally 
by four-points bending test of this epoxy beam. 

4.1. THEORETICAL VERIFICATION OF OPTIMIZING METHOD 

The mechanical and optical properties of epoxy resin are tabulated in Table 1 and 
shown in Fig. 2 and 3. Figure 2 shows the master curves of creep compliance Dc(t',T0) 
and creep bhefringence-strain coefficient C (f ,TQ) of the resin used. Figure 3 shows the 
time-temperature shift factor with respect to TQ of these master curves. 

This resin shows a glassy behavior in the region of short reduced time where both 
coefficients Dc and C keep low constant values, and this region shows rubbery behavior 
in the region of long reduced time, where these two coefficients keep high constant 
values. In the region of the intermediate reduce time, this region shows viscoelastic 
behavior where both coefficients D„ and C increase remarkably. 

c c 

Table 1 Mechanical and optical properties 

Item Glassy Rubbery 
Young's modulus 1.31GPa 0.0124GP» 
Polsson's ratio 0.35 0.5 
Strain sensitivity 116X10Sfr/m 40.6X10* fr/m 
Coefficient of 61X10-«-C-l 168X10-1C-1 

thermal expansion 
Glass transition 

132C temperature 
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Fig.2 Master curves of photoviscoelastic coefficients 
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Fig.3 Time-temperature shift factor aT0 (T) 

Three estimate functions kj.kj and k_ with respect to the reduced time t'can be 
theoretically calculated by using the photoviscoelastic coefficients of this resin and 
equations (9), (10) and (11). The theoretical values shown in Fig. 4, 5 and 6 were 
obtained from the master curves shown in Fig. 2. 

First, k,, the ratio of ton, toe , has peak value neart-104 min and keeps constant 
value in at long reduced tune regions seen Fig. 4. This means that the frozen birefrin- 
gence nf by the stress freezing from viscoelastic region is rather larger than that from 
rubbery region, in the case that the maximum frozen strain e     is fixed. 

Secondly, k,, the ratio of a.to E , decreases monotonously as the reduced time t' 
increases as shown in Fig. 5. This means that the large stress can be loaded, in the case 
that the stress freezing is done from the short reduced time. 

Finally, k3, the ratio of nf to oQ, increases monotonously as t' increase as shown in Fig. 
6. This means that the large frozen birefringence can be obtained in the vicinity of rub- 
bery state, in the case that the stress o. is fixed. 

4.2. EXPERIMENTAL VERIFICATION OF OPTIMIZING METHOD 

A specimen for 4-point bending test made from the epoxy resin mentioned previously was 
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Fig.6 Estimate function k, 

used. Gauge marks for measuring the deformation and strain were drawn on the 
surfaces of the specimen. As the glass transition temperature is 132 °C, five tempera- 
tures, 100 "C, 120 °C, 135 °C, 150 °C and 180 °C, were adapted as the holding tempera- 
ture T.. The loads W at each T.  were determined using the master curve of creep 
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compliance. 
Specimen was held for a sufficiently long time at each constant temperature Th in 

the heating chamber without loading and W was loaded on the specimen at time t=0 and 
was kept for 30 min, then gradually cooling down to room temperature T,(=20 °C) at a 
cooling speed of approximately 0.5 °C/min. After cooling, the maximum strain e was 
obtained by measuring gauge marks of the loaded specimen. Then, the load of specimen 
was removed and the maximum frozen birefringence nf at the edge of the specimen was 
obtained from the frozen fringe pattern recorded. Finally, experimental values of k,, 
k, and k, were obtained by substituting these values into the equations (1), (2) and (3). 

"Experimental results are indicated in Fig. 4, 5 and 6, comparing with the theoretical 
results. Experimental results ofkj, k, and k3 agree well with the theoretical results of kj, 
k, and k, for each experimental conditions. 

in an ordinary SF method, SF procedure is determined to hold lc, the ratio of nf and oQ, 
as large as possible. But, in some case, it is need to hold kj or k, as large as possible. 
For example, the stress freezing from the high temperature at which the material is in a 
rubbery state, large frozen birefringence can be obtained, but e becomes consider- 
ably large. On the other hand, the evident was proofed that, if the strain limit is small, the 
SF from the temperature range at which the material is in viscoelastic state results in 
rather large  frozen birefringence and larger frozen stress than the ordinary SF. 

5. Conclusion 

The results are summarized as follows. A new concept for finding the most suitable 
holding SF temperature and optimizing the freezing cycle in order to improve this 
technique, based on the quantitatively character of linear-photoviscoelastic behavior of 
model material. Thus, the estimation functions including the strain sensitivity men- 
tioned above, are defined for practical SF method, based on the photoviscoelastic behav- 
iors of the material. And, their availability was proved theoretically, together with experi- 
mentally. 
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Abstract. The measurement of surface profile by projecting phase-stepped fringe 
patterns at an angle to the observation direction is well known. Ambiguous range data 
results, however, when the object has discontinuities in its profile. The ambiguities can 
be prevented by projecting fringes of varying spatial frequency. In this paper we describe 
an approach which combines high accuracy and reliability. The spatial frequency is 
reduced exponentially from the maximum value. The sequence of phase values at a given 
pixel is then unwrapped independently of the other image pixels, and all the intermediate 
phase values contribute in a least squares sense to the final range estimate for the pixel. 
The algorithm has been implemented on a pipeline image processing system. The fringe 
patterns are projected at 30 frames s"1 using a high resolution data projector. Images are 
acquired and analysed in real time, at the same framing rate. A total acquisition and 
processing time of 0.75 s has been achieved for a maximum spatial frequency of 16 
fringes across the field of view. 

1.  Introduction 

Projected fringes have been used over many years for measuring surface profiles [1-3]. 
The fringes are usually created by imaging a fixed or programmable mask, having a 
sinusoidal density profile, onto the object, mterference patterns from a coherent light 
source can also be used, resulting in an extended depth of field, but with more speckle 
noise and greater sensitivity to environmental disturbance. If the projection direction is 
different from the observation direction, the phase distribution of the measured fringe 
pattern includes information on the surface height profile of the object. 

The fringe phase distribution is normally calculated from the images either by 
Fourier transformation or by phase-stepping of the fringe patterns. Both methods result 
in phase maps which are wrapped onto the range -it to +rc. When the object surface is 
continuous, the phase map can be unwrapped (i.e. the 2xc phase discontinuities removed) 
by a spatial comparison of neighbouring pixels. When the object has surface 
discontinuties, however, this process will fail and it then becomes necessary to project 



fringe patterns of varying spatial frequency [4-8]. The resulting sequence of phase values 
at each pixel can be unwrapped over time ("temporal phase unwrapping") to give an 
absolute phase value independent of the other pixels in the image. 

In this paper we describe an optimised version of this approach in which the 
fringe spatial frequency is reduced from a maximum value down to zero by an 
exponentially growing decrement[9,10]. Intermediate phase values are included in a least 
squares sense to reduce the random errors in the calculated range values. The so-called 
"reversed exponential" algorithm has been implemented on a pipeline image processor 
with the aim of calculating range data at rates in excess of 103 coordinates s'1. The 
system hardware and preliminary results are described in section 3. 

2. Temporal phase unwrapping: reversed exponential method 

Figure 1 shows the standard set up used for shape measurement by projected fringes. The 
projector fills a region of space with a three-dimensional sinusoidal intensity 
distribution. The fringe normals are assumed to lie in the plane of the page. To apply 
the "forward exponential" temporal unwrapping method, the fringe spatial frequency is 
increased exponentially over time. Initially (r = 1), a single fringe is projected, so that 
the fringe phase ranges from -it on one side to +« on the other side of the field of view. 
For subsequent measurements (r = 2,4,8...5) the number of fringes is set equal to f so 
that the phase range increases to (-fit, tu). For each t value, a number (typically 4) of 
phase-stepped images, I(k,t) (where Jfe = 1,2,3,4 for the four frame algorithm), is 
acquired. The situation depicted in Figure 1 corresponds to the case t = 2. 

The phase change A<bw(i,j) occurring at a given pixel due to a change in 
fringe frequency from t= i to t= j is calculated from the two sets of intensity values 
using the formula: 

A*(i,;) = *©-*(/) (1) 

where 

*(0=tan -l A/42O 
A/n(0 (2) 

and 

A/H(0=/(*,0-/(/,f) (3) 

The phase values calculated by Eqn. (2) lie in the range (-rc, it) and therefore the 
incremental phase changes calculated by Eqn. (1) lie in the range (-2n, 2K). It is 
convenient to rewrap these back into the range (-it, «) using the unwrapping operator 
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t/{*!,*2} = *i - 27CNINTJ -^ 
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and NINT[...] denotes rounding to the nearest integer. The subscript w denotes a wrapped 
phase value (i.e., one lying in the range (-rc, n)), and subscript u will be used to denote 
an unwrapped phase value (i.e., adjusted by addition of the correct integral multiple of 
2n). 

Tne sequence of measured phase values, for a pixel receiving light from a 
scattering point on plane P of figure 1, is illustrated in Figure 2(a). A$W(1,0) and 
A$w(2,l) are both equal to the corresponding unwrapped phase changes, because in 
each case the number of projected fringes is increased by just one, and they can therefore 
be added to give A*u (2,0). A<DW (4,2) will in general contain phase wraps, but can be 
unwrapped by noting that A*u(4,2) should be equal to A#u(2,0). The sum 
A*„(4,2) and A3>a(2,0) then results in A$u (4,0). This process can be repealed with 
an exponentially growing sequence of fringe densities. The final unwrapped phase value, 
¥, then defines the plane on which the scattering point lies. 

The accuracy of the range value can, however, be improved by least squares 
fitting a line to the phase values. The gradient a>, rather than the unwrapped value *P, is 
used to define the plane on which the scattering point lies. The problem with the 
forward exponential sequence is that most of the phase values lie at the low-r end of the 
<&-r graph. Low t values do not provide reliable estimates of the gradient, and so do not 
contribute significantly to the least-squares fit However, the algorithm can be modified 
by starting at the maximum fringe density (t = s), and reducing the number of fringes by 
l,2,4,8...s/2. This ensures that the measured phase values are now clustered at the high-f 
end of the *-f graph. The least-squares estimator for 00 is given by!9,10] 

log-, J-l 

**„(*)+   X   (s-2vYbu(s-2v) 

* = *fc=I  (6) 

s2+   £   (5-2*)2     . 
v=0 

and the standard deviation of the range value is reduced by a factor of approximately 
^/log2 s, compared with that from the basic temporal unwrapping algorithm. 

3. Real-time  implentation of reversed exponential algorithm 

A commercial pipeline processing system has been used to implement the reversed 
exponential algorithm in real-time. The Datacube MaxTD system consists of two 



MaxVideo250 image processing boards with the addition of one Advanced Processor 
module. 

During the initialisation period a lookup table (LUT) is created which contains 
the projected fringe pattern data. Each row of the LUT can be expanded at run-time using 
the pipeline hardware to create a complete projection image as illustrated in Figure 3. 
Hence, a reversed exponential sequence of phase stepped images starting with 16 fringes 
(ie. t=16, 15, 14, 12, 8) requires a LUT with 20 rows of pixel data. In this way 
projected images are generated at a rate of 30 frames s'1 and projected onto the test object 
using a Proxima DLP SVGA projector. 

A digital CCD camera (EEV16) is sychronised to the projector and acquires the 
intensity maps into virtual surface image memories (VSIM) on the MaxVideo boards. 
Multi-buffering of the dual-ported memories is employed to allow the data to be 
processed during the acquisition period. Hence, at any given time during the experiment 
four operations occur in parallel: (i) generation of the fringe pattern image; (ii) transfer 
of the fringe pattern image to the projector, (iii) acquisition of the intensity map from 
the camera; and (iv) processing the acquired data. 

Implementing the processing algorithm using pipeline processing hardware 
dictates that the arithmetic is performed using fixed point arithmetic. Furthermore the 
intermediate results that are stored on VSIMs must have 8 or 16 bit resolution to make 
efficient use of available resources so some rounding of results is inevitable. The 
propagation of these errors has been minimised by scaling all intermediate values such 
that the full dynamic range of the register stores are utilised. 

The processing algorithm can be divided into four sections as illustrated in 
Figure 4, each of which can be performed in one frame period. Hence, the updated phase 
gradient estimate (to) is computed every four frame periods which corresponds to the 
time taken for one acquisition cycle. The first step computes a 16 bit wrapped phase 
value (*w) from the acquired 8 bit intensity maps (I(l,r)..I(4,r)) according to equation 
(2). The intermediate results (AL.2 and AI13) are rounded to 8 bits and used as inputs to a 
16 bit x 16 bit LUT which performs the atan20 function. The second step derives the 
change in wrapped phase (A*w) according to equation (1) and generates the unwrapped 
phase using a running sum of unwrapped phase value (£#„). Step 3 then adds the new 
unwrapped phase value to the running total. Step 4 updates the running phase gradient 
estimate 0 with a weighted sum of the unwrapped phase value. 

The final stage is the calculation of a surface height value from each co value. 
This is done using pre-determined values of calibration constants following the 
procedure described in [6]. 

4.   Results 

Figures 5 and 6 show results obtained from a test object containing surface steps. 
Figure 5 is the wrapped phase map from the highest fringe density (16 fringes across the 
field of view). From this map alone it is impossible to determine the relative heights of 
the surface steps. In addition, holes and shadowed regions would cause difficulties for 
most spatial unwrapping algorithms. A reversed exponential sequence with a maximum 
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of 16 fringes was used to illuminate the sample. A projection and acquisition rate of 30 p. 5 
frames s'1 was employed, with the resulting (512x508) depth matrix available in 0.75 s. 
This is shown as a surface plot in Figure 6. Despite the problem areas the profile is 
reconstructed correctly in the regions where valid data is available. Shadowed regions ate 
detected automatically by thresholding a modulation map so as to create a binary mask. 
The mask is generated at run time and can be toggled on or off as required by the user. 

5.   Conclusions 

When measuring surface profile by the method of phase-shifted projected fringes, the use 
Of fringes of varying pitch combined with temporal phase unwrapping allows unique 
range data to be calculated at each camera pixel. The optimal approach described in the 
paper involves decreasing the number of fringes exponentially to zero from the 
maximum value, s. This method combines a superior unwrapping reliability, a 
reduction in data acquisition and processing time by a factor Qog2S)/s and a decrease in 
measurement error of ^/10g2 s, compared with the basic temporal unwrapping method 
(in which the number of fringes increases linearly from 1 to s). It is the most 
appropriate of the methods in situations where the emphasis is on achieving a high 
measurement speed with reasonable accuracy. 

A shape measurement system has been built based on this algorithm in which 
fringe patterns are projected, and images acquired, at 30 frames s'1. The images ate 
analysed in real time on a pipeline processor. The entire process of projecting the 
patterns, acquiring the images, calculating and unwrapping the phase maps, generating 
the valid-data mask, performing the least squares fitting along the time axis, and 
converting the data to height values takes under 0.8 s for ca. 250,000 coordinates. Depth 
measurement accuracies of ca. 1 part in 1500 have been achieved to date with the current 
fringe density of 16 across the field of view. Such a system is likely to find application 
in areas such as high speed quality control and robot vision systems. 
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Figure 1. Set-up used to measure the surface shape of an object within the measurement volume. The 

dashed line is the cross-section through plane P referred to in the text 
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Figure 2.   Time-varying unwrapped phase for a given pixel: forward and reversed exponential methods (a) 

and (b), respectively. 



Figure 3.   Pipeline processing hardware generates each fringe pattern image from one row of the LUT. 
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Figure 4. Pipeline image processing operations for the four steps referred to in section 3. 
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Figure 5. Wrapped phase map for a plate with surface steps. Black and white represent phase values of -it 

and +it, respectively. 

Figure 6. Surface profile for the plate shown in Figure 5 as measured by the high speed system described in 

this paper. Units for the axes are mm. 
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Abstract 

The spectral analysis of grating allows, for static loading, the direct measurement of 
local strains at the surface of a body. This grating analysis is achieved by two ways 
(optical diffraction phenomenon or numerical Fourier transform) in order to determine 
at each step of load pitches and orientations of crossed grating. Our purpose is to extend 
this strain measurement method to investigate dynamic problems. The grating 
interrogation is performed using optical diffraction of a laser beam with an oblique 
incidence. In order to separate the diffracted beams during the dynamic event, we 
associate with each strain state a specific angle of the incident laser beam. This 
procedure allows to record 23 strain states at a maximum frequency equal to 1 MHz. 
The diffracted spots can be stored by two ways (film and CCD camera) and their 
analysis gives a strain sensitivity of 2.104. 

1. Introduction 

The measurement of mechanical quantities without contact, without destruction of the 
specimen or in hostile environment can be achieved by the optical investigations. The 
grid method [1], one of these, allows to determine the magnitude and the orientation of 
the principal strain as well as the rigid body rotation [2]. This is achieved by the 
comparison between the geometry of a deformed crossed grating (pitch and orientation 
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of each direction of grating) with the geometry of the same grating in the initial state. 
The analysis of the grating is obtained for static investigations by an optical Fourier 
transform or a numerical one [3] [4]. This method is performed for the measurement of 
small and large strains with a sensitivity comparable to the one obtained by strain gauge 
[5]. 

Investigations of dynamic problems from grating analysis have been performed [6] 
few decades ago. The easy use of laser and the recent development of numerical tools 
like CCD camera allows the elaboration of modern and simplify experimental devices. 
This new method is based on an interrogation of a crossed grating from diffraction 
phenomenon under the oblique incidence. 

2. recording and analysis device 

2.1. OBLIQUE DIFFRACTION PHENOMENON 

By associating with each strain state a specific angle of the incident laser beam, we can 
separate the diffracted beams during the dynamic event. We have so to take account of 
the diffraction phenomenon in oblique incidence [7]. We present on the Figure 1 the 
oblique diffraction phenomenon for an uni-directional grating of pitch p analysed on 
reflection by a laser beam. 

grating 
of pitch p 

laser beam 

Figure 1 : Oblique diffraction of a laser beam from an unidirectional grating 

We can see on Figure 2 the geometrical distribution of the diffracted spots 
(experimentally realised with an oblique incidence of a=30°) given by a crossed 
grating. 
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Figure 2 : Photography realised from the diffraction in oblique incidence of a laser beam through a crossed 
grating 

The recording and the localisation of+1, 0 and -1 orders of diffraction give not only 
the 4 geometrical characteristics of the crossed grating, but also the 2 angular positions 
and the 3 components of the position of the measurement base. The comparison of these 
9 parameters with the quantities in the initial state gives the strain tensor, the rigid body 
rotation and the rigid body displacement [8]. 

2.2. RECORDING DEVICE 

The variation of the orientation of the incident laser beam is experimentally achieved by 
the used of acousto-optics deflectors [9][10] (Figure 3 and Figure 4). These elements 
allow the recording of 23 sequential information during the dynamic event at a 
maximum frequency near 1 MHz. 

An acousto-optic shutter authorises exposure time equal to 30 ns and an optical 
element constituted of 48 mirrors permits to move each beam in the direction of the 
measurement base. 

A study of the optical efficiency of this experimental device shows that the use of a 
recording film of 400 ASA sensitivity or a direct recording on CCD camera with a 
250 mW laser power gives a minimum exposure time equal to 0.1 us. This value, ten 
percent of the maximum frame rate, is correct to have instantly information. 

In these conditions, the developed device can be applied for a strain measurement 
during a dynamic loading of a minimal duration equal to 23 us. 

Mo-L7 
p.3 
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Dynamic loading 

Optical Element 
composed by 

48 Mirrors 
+ 1 lens 

Figure 3 : Schema of the optical recording device 

Figure 4 : Photography of the optical recording device 

The small dimension of this recording device, about 300x500x200 mm5, allows the 
use of this technique on most experimental or industrial site. 

2.3. STORAGE ON PHOTOGRAPHIC FILM 

For a photographic storage of the diffraction picture we replace the screen of the Figure 
3 by a 9x12 cm photographic film (400 ASA). An adapted analysis device has been 
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developed to determine the position of the 115 spots (5 orders of diffraction x 23 states 
of loading) recorded on the photographic film. This device consists of a XY 
displacement table (Figure 5) with 10 urn sensitivity for moving the film, and a CCD 
camera for the acquisition of the spots 

Microscope 
lens 

CCD Camera 

Personal computer 486 
Figure 5: Experimental device for photographic film analysis 

In a first time we create a XY file containing the spots localisation obtained by a 
global analysis of the film. This analysis is achieved by mounting a photographic lens 
on the CCD camera. In a second time, we use the XY file to move the film with a 
motorised displacement table. The diffraction picture is then analysed spot by spot 
mounting a microscope lens on the CCD camera. By this way, we virtually multiply the 
number of pixels of the CCD camera (1024x1024 pixels to 8000x8000 pixels with 
10 urn resolution of the XY displacement). After 10 minutes of photographic film 
analysis, we obtain a strain sensitivity of approximately 2.10"4. 

The maximum strain rate depends on the strain sensitivity and on the minimum 
exposure time, this is obtained by dividing the strain sensitivity by the exposure time. 
For example, a dynamic event analysed with a sensitivity of 2.10"4 and an exposure time 
of 0.1 us authorises a maximum strain rate of 2000 s'\ We can have a better strain rate 
of 20000 s'1 if the strain sensitivity is equal to 2.10"3. 

2.4. DIRECT STORAGE ON CCD CAMERA 

For a CCD storage of the diffraction picture we replace the screen of the Figure 3 by a 
CCD camera with 1024x1024 pixels on 10 bits. The storage of the diffracted spots is 
obtained by synchronisation of the CCD camera acquisition with the dynamic loading. 
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This device is more simple but the pitch of the CCD grid (larger than the film grain) 
induces a smaller strain sensitivity. In our case the strain sensitivity reaches to 10'3. 

The optical efficiency of this experimental device gives the same performances than 
the first (20 (JS of minimum loading time with 0.1 us of exposure time and 250 mW of 
laser power). The maximum strain rate is equal to 10000 s'1. 

3. Tests 

For all the experimental investigations, the diameter of the measurement base is of 
about 1 mm. The crossed grating is realised by a replication technique [11] and their 
density is equal to 200 lines per millimetre. The tests are realised with a CCD camera of 
1024x1024 pixels for the direct technique and a 400 ASA film of 9x12 cm for the 
photographic one. On our figures, we compare the strain optically measured and those 
obtained by a classical extensometry using a strain gauge. 

3.1. PHOTOGRAPHIC RECORDING 

We give (Figure 6) a compression test using the impact of a mass on the mobile grip of 
the specimen. The storage of the optical data is realised on a photographic film. For this 
impact of 600 ps duration, we have chosen the frame rate equal to 35 kHz and an 
exposure time of 2.8 us. 

Longitudinal strain (gauge) 
3.0E-31 D n 0 D D Longitudinal strain (grating) 

A A A A A Transversal strain (grating) 
2.0E-3 - 

1.0E-3 

a 
u 
w 

-1.0E-3 

-2.0E-3 

—3.0E—3 11111111111111111111111111111111111111111111 n 11111 
O.OE+0    2.0E-4    4.0E-4    6.0E-4    8.0E-4    1.0E-3 

Time (s) 
Figure 6: Dynamic compression lest with photographic acquisition 
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3.2. CCD CAMERA RECORDING 

On Figure 7 we present a compression test performing with a Hopkinson bar loading. 
We have adjusted the framing rate to 1 MHz according to the duration of the loading 
(20 us). In this test, the exposure time is 10% of the framing rate (0.1 us). 

    Longitudinal strain (gauge) 
4E „     $ ♦ $ ♦   Longitudinal strain (grating) 

~1 A A A A   Transversal strain (grating) 

-4E-3 - 

-8E-3 

0.00E+0 3.00E-5 1.00E-5 2.00E-5 

Time (s) 
Figure 7: Dynamic compression test with CCD acquisition: 

These two dynamic tests give a good idea of the performances of this method. The 
accordance between longitudinal strains optically determined and classically measured 
demonstrates the efficiency of the developed method. 

4. Conclusion 

This measurement method performed by an interrogation of the grating using the optical 
diffraction with an oblique incidence allows to determine not only the strain tensor given 
by the optical diffraction in normal incidence but also the six rigid motions of a 
measurement base of 1 mm. 

The use of acousto-optic components allows to separate easily the information 
during a dynamic or a static loading [12] and to record 23 states of the specimen at up 
to 1,000,000 frames per second. 

The recording of the diffraction image can be achieved by two ways : the 
acquisition on a photographic film analysed by specific device composed by a digital 
image processing using a CCD camera - the direct acquisition on CCD camera. These 
two procedures give different strain sensitivity and maximum strain rate. 
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The direct determination of strains without any contact is well adapted to the 
analysis of impact loadings with the measurement directly obtained from the specimen, 
to the study of behaviour laws in static and dynamic loading or to the control of 
structures under vibratory regimes. 
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Abstract. This paper discusses a new method for determining fringe order 
and the principal direction of birefringence from a single image in practical 
photoviscoelastic analysis. Using an elliptically polarized white light and 
color image processing, fringe pattern at each instant is analyzed from three 
monochromatic images obtained with a single shot. It will be emphasized 
that no repetition of experiment under the same condition nor multiple 
images acquisition is necessary, which is usually adopted in the current 
techniques. An example problem in the case of a plate subjected to low 
velocity impact is successfully analyzed by use of the method proposed, 
then the time variation of stress around the point of impact is traced taking 
the constitutive equations of photoviscoelasticity into account. 

1.   Introduction 

From the viewpoint of experimental analysis of time-dependent stress and 
strain in a viscoelastic material, photoviscoelastic technique [1-4] is a very 
useful tool. In the currently available fringe analysis techniques such as 
phase-shifting methods with a monochromatic light [5,6], multiple images 
are inevitably required to determine both fringe order and the principal 
direction of birefringence. Namely, multiple measurements are required as- 
suming the same stress and strain state involving their history could arise 
under repeated experiments. Thus, the current techniques cannot be ap- 
plied to the problems in which the good repeatability of experiment is not 
expected. In order to analyze stresses in a viscoelastic body, it is required to 
determine both of fringe order and the principal direction of birefringence 
from an image data obtained with a single shot at each instant. 

The objective of this study is to develop a method, using photoviscoelas- 
tic technique, for studying time-variant stress distributions. In the previous 
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paper, the authors [7] have proposed a photoelastic method for determining 
both fringe order and the principal direction of birefringence from a single 
color image using an elliptically polarized white light. Applying the method 
proposed to sequential color photoviscoelastic image data, time-dependent 
fringe order and the principal direction of birefringence distributions at 
each instant can be determined, and the following time-dependent stress 
and strain analysis can be performed using the constitutive equations of 
photoviscoelasticity. In this paper, the theory of the proposed fringe anal- 
ysis method is described briefly. Then, the successful application of the 
method to a photoviscoelastic analysis is demonstrated in the case of a 
plate subjected to low velocity impact. 

2.   Optical Constitutive Equations of Photoviscoelasticity 

In two-dimensional linearly photoviscoelastic analysis, the time-dependent 
differences of principal stresses a\(t) - a2(t) and strains e\{t) - e2{t) as 
well as the angle ß{t) of the principal stress direction and the angle 7(f) of 
the principal strain direction can be calculated by measuring isochromatic 
fringe order per unit thickness of a specimen n(t) = N(t)/h (where h is the 
thickness of the specimen) and the principal direction of birefringence a{t) 
which change with time t. The 2-D photoviscoelastic constitutive relations 
are expressed by the following equations [2-4]. 

{ai(t)-a2(t)}cos2ß(t)   = C7T
1(*)n(0)cos2a(0) 

+ J*c;Ht-T)dn{T)c
d°T

s2ait)dT    (1) 

{ax{t)-a2{t)}sm2ß{t)   = C^MO) sin2a(0) 

+ £c;Xt-r)dn{T)fT
Mt)dT    (2) 

{El(i) - e2(t)} cos 27(f)   = C-1(t)n(0)cos2a(0) 

+ £c-Ht-T)dn{T)™2°®dT (3) 

{£l(t) - e2(t)} sm2y(t)   = C-1(*)n(0)sin2a(0) 

+ fc^t-r)dn{T)fT
Mt)dr      (4) 

where C~} (t) denotes the inverse relaxation stress-birefringence coefficient 
and C~c

l(i) is the inverse creep strain-birefringence coefficient, which are 
material properties and must be measured and determined beforehand. 
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Figure 1.    Arrangement of the optical elements. 

3.   Fringe Analysis Using Elliptically Polarized White Light 

3.1.  FRINGE ORDER DETERMINATION 

When a color CCD camera is used to record fringe pattern with white light, 
a digitized color image data consists of three monochromatic images cor- 
responding to the three primary colors, i.e., red, green and blue, and each 
of three monochromatic images has its own intensity level and distribu- 
tion. The brightness distribution of the photoviscoelastic image through a 
polariscope arranged as shown in Figure 1 is expressed as [7] 

j.   _    i \  / " j0Fi sin2 -^ (9 + cos 2e + 5 cos 4a 
16 AJ2 - Aii -Mil * 
+ cos2ecos4a + 4\/3sin£sin4aJdA       (i = r,g,b)        (5) 

where 7rj (= irj(A)) expresses the spectral distribution of the light used, 
i = r, g, b denotes red, green and blue colors, An and A,2 are the lower 
and upper limits of the spectrum of the filters in the camera, Fi (=.F;(A)), 
the spectral responses of the red, green and blue filters, 6, retardation, a, 
the principal direction of birefringence, e, the quarter-wave plate error [8], 
respectively. 

By comparing the light intensity values at each data point with the 
corresponding values in a calibration table which connects fringe order with 
the light intensity values, fringe order can be determined in a good accuracy. 
Different from the data-base-search method proposed by Ajovalasit et al. 
[9], to eliminate the effect of the principal direction of birefringence a of the 
image data, the gray levels have to be normalized before comparing these 
values from the model and the calibration table in the proposed method. 
Fringe order can be determined by means of an error function Ej as 

(6) 
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where Rm, Gm and Bm are the digitized values of light intensities Ir, Ig 

and lb, i.e., the gray levels of a image data at each point, and Rj, Gj and 
Bj are also digitized in the calibration table, respectively. Xm and Xj are 
the sum of the intensity levels, i.e., 

Xm = Rm + Gm + Bm,  Xj = Rj + Gj + Bj (7) 

Fringe order at a point can be determined by searching index j which 
minimize the error function Ej. If the variation of the fringe order in the 
calibration beam is linear and the first pixel of the calibration table could 
be zero fringe order, the fringe order Nj corresponding to the pixel index j 
is expressed as [9] 

Nj = Nm4- (8) 

where Nm is the maximum fringe order in the calibration table and jm is 
the number of the values stored in the calibration table. 

3.2.  PRINCIPAL DIRECTION OF BIREFRINGENCE DETERMINATION 

If the retardation error e could be treated as a constant for each color, 
Equation (5) can be rewritten as 

/,- = Yi ■ Zi (9) 

where 

Y{    -   9 + cos2e,- + 5 cos4a + cos 2e,-cos4a+ 4\/3 sine,-sin 4a  (10) 

Zi   =    L—L— I*" I0Fi sin2 6-^-dX      (i = r,g,b) (11) 
16 Ä2 — Ai JXii A 

Here, e,- represents the retardation errors of the quarter-wave plates at the 
center wavelengths of the spectrums captured by each sensor in the color 
camera. In the following, Equation (9) is adopted for the calculation of the 
principal direction of birefringence. 

The value of Equation (11) can be obtained from the digitized intensity 
values in the calibration table if the calibration test is performed with 
the polarization angle 0 rad. Thus, using the light intensity values in the 
calibration table, the following equation is derived [7]. 

Xm-Yr-— Rt-Yg •■=-?■ Gt-Yb-—^ Bt = 0 (12) 
7 + coser 

y   7 + cos£fl 7 + cose-6 

where Rt, Gt and Bt are the gray levels stored in the calibration table, 
i.e., they are corresponding to Equation (11). Equation (12) is a non-linear 
equation with respect to the principal direction of birefringence a. The 
value of a can be obtained by solving Equation (12), numerically. 
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Figure. S.    Calibration table (Gray level distributions of the calibration beam). 

4.   Material Properties and Experimental Procedure 

The material used in this study is a polyurethane rubber [2]. This mate- 
rial is linearly viscoelastic, thermorheologically simple and birefringent, and 
exhibits excellent light transmission properties. Its glass transition temper- 
ature was measured as Tg = 223 K. Figure 2 shows the photoviscoelastic 
characteristics of the material, i.e., the master curves of the inverse relax- 
ation stress-birefringence coefficient C~^{t) and the inverse creep strain- 
birefringence coefficient C^(t). Details of the experimental procedure for 
determining photoviscoelastic coefficients are given in Ref [1]. 

The calibration test to make up the calibration table linking the digi- 
tized light intensity levels with fringe order was performed using a beam 
specimen made of the same material (polyurethane rubber). A beam spec- 
imen, 40 mm height, 140 mm width and 10 mm thickness, was subjected 
to a tension-bending load. The color fringe pattern around the center of 
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Figure 4.    Series of 6 consecutive photoviscoelastic fringe patterns; camera speed—1000 
frames per sec (Note that these are color images). 

Figure 5. An example set of the distributions of fringe order and the principal direction 
of birefringence. 

the beam was acquired and the light intensity levels at each pixel along 
the transverse section of the calibration beam were stored in an ascending 
order array with fringe order for the wavelength 546 nm as the calibration 
table, as shown in Figure 3. 

A plate specimen made of polyurethane rubber, 150 mm width, 50 mm 
height and 10 mm thickness, was subjected to low velocity impact of 1.64 
kg disk type weight falling from a height of 10 mm. The photoviscoelas- 
tic fringe patterns were recorded by a color video camera operated at a 
speed of 1000 frames per sec. The constant temperature T = 237 K was 
carefully maintained during the whole experiment within ±0.5 K. At this 
temperature the material shows a remarkably viscoelastic behavior. 

5.   Results and Discussion 

Figure 4 shows the first 6 frames of the photoviscoelastic fringe pattern. 
Note that the color images are expressed by gray levels, here. The attenua- 
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Figure 7.    Time variations of the differences of principal stresses and strains, and their 
directions 

tion of fringes due to the ellipticity of the light used is obviously seen. The 
fringe patterns look significantly different from static ones [10] or Hertz 
elastic contact [11] where maximum fringes appear inside a specimen. The 
distributions of the fringe order and the principal direction of birefringence 
at each instant were determined by the method proposed. Figure 5 shows 
an example set of the distributions of the fringe order and the principal 
direction of birefringence. Here, the values are expressed in 10 steps con- 
tour maps. Figure 6 shows the time variations of the fringe order and the 
principal direction of birefringence at an example point Q shown in this 
figure. The principal direction of birefringence varies with time reflecting 
the nonproportional loading condition. The time variations of the differ- 
ences of the principal stresses and strains as well as their directions were 
calculated using the optical constitutive equations of photoviscoelasticity 
as shown in Figure 7. Reflecting the viscoelastic properties of the material, 
not only oi{t) — <T2(t) and £i(t) — ei(t) but ß[t) and j(t) show different 
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time variations each other. 

6.   Concluding Remarks 

This study discussed a new method for determining fringe order and the 
principal direction of birefringence from a single image using an elliptically 
polarized white light and color image processing for practical photovis- 
coelastic analysis. Using the method proposed, the time variation of fringe 
order and the principal direction of birefringence in a plate subjected to 
low velocity impact were determined without the repetition of experiment. 
Also, the time variations of the differences of the principal stresses and 
strains as well as their directions were evaluated using the optical consti- 
tutive equations of photoviscoelasticity. 

It is pointed out that time-varying problems in which good repeatability 
of experiments is not expected can be analyzed by the method proposed. 
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Abstract: Laser stereolithography deals with the manufacture of three-dimensional 
objects that are made by space-resolved laser-induced polymerization. In order to 
obtain three dimensional microobjects, we developed a new microstereolithography 
apparatus based on the use of a dynamic mask-generator which allows the 
manufacture of a complete layer by only one irradiation, the part being 
manufactured layer by layer. This process uses a broad-band visible light source, 
that leads to the elimination of speckle effects resulting from the conventional use of 
a laser beam. A lateral resolution of 2 um * 2 um has been demonstrated with this 
new process. 

Introduction 

All started, as regards microtechnologies, a few centuries ago with the watch- 
making industry. The manufacturing of clock components has been a constant way 
to make progress in the design of new mechanisms as well as in the development of 
new technologies. Such a domination of mechanics as regards miniaturization and 
precision continued until the recent appearance of microelectronics, about 30 years 
ago : microelectronics technologies have been developed to improve 
miniaturization, in order to manufacture higher density integrated electronic 
components. This leads to a higher functional frequency due to shorter 
displacements of charges carriers inside the structures. 

Nowadays, the same microfabrication processes are begmning to be applied to 
the manufacture of integrated mechanical systems on silicon chips. Such 
microsystems are called Micro Electro Mechanical systems (MEMs) and can lead 
to many applications such as micromotors, microsensors, microactuators, 
micropositioning systems [1-4]... 

But the main limitation of these processes is that they can be only adapted to 
manufacture planar components presenting a maximal thickness of about 20 
micrometers. Then, several recent processes have been developed to manufacture 
thick micro-parts. The most successful is the so-called LIGA process, based on 
deep-etch x-ray lithography and subsequent replication processes like 
electroforrning and molding [5]. However, the use of a synchrotron source leads to 
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limitations because of its expense and avaibility constraints. Then, a new negative- 
tone near-UV resist (IBM SU-8) has been recently designed specifically for 
ultrathick, high-aspect-ratio MEMs-type applications, based on a low-cost LIGA- 
type process [6]. But, because they are lithography-based, the main limitation of 
these LIGA-type processes is that complex shapes can not be made easily, in 
particular with curved surfaces or an important number of layers. 

That is why, applying stereolithography (SL) to the field of micro-fabrication 
appears to be an attractive alternative process to the manufacture of real three- 
dimensional microobjects with complex shapes. 

After reminding the principles of the SL technique, we briefly present previous 
works concerning applications of SL to microtechnics. At last, we describe a new 
apparatus of micro-SL, which is based on the use of a broad-band visible light 
source. 

2. The Stereolithography technique 

The stereolithography technique [7] is a process which has been performed to 
manufacture three-dimensional objects, mainly for rapid prototyping applications. 

The basic principle is a space-resolved light-induced polymerization, consisting 
in a liquid/solid phototransformation. Current machines work by laying down a thin 
layer of resin and shining the proper wavelength of light on it in a pattern that 
describes the two-dimensional shape of a single cross section of the object to be 
built. Once a single cross section is built in this way, a new layer of resin is applied 
and the process is repeated. Then thin layers made of solidified photopolymer are 
stacked from bottom to up to create complicated three dimensional shapes, leading 
to true 3D microparts obtained quickly and with no assembly. At last, a scaper is 
also used to ensure a homogeneous thickness of the new liquid resin layer, each time 
the process is repeated. 

ES 
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computer I 

Focussing lens + Galva-mounted mirrors 

Shutter 

3—cp 

£33 

U    Vertical 
translator 

1 bv'-v'.  ':'■"'■. L—-V I ™-<«.i Reactor 

Figure 1. The conventional SL process 
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Once the object to be built is designed (generally using Computer Aided Design 
processes), it is then numerically sliced to define the different cross sections of the 
object to be manufactured. Then, the numerical data defining each of the sections 
are sequentially sent to the machine, in order to built them. 

Two principal kinds of SL processes can be distinguished up to now, depending 
on the way to build a cross section. The first one, which can be considered as 
conventional, is based on the vectorial tracing of every layer of the object by 
moving a focalized laser beam on the surface of the resin (Fig. 1). Galva-mounted 
mirrors are then used, and the light is occulted by a mechanical shutter during jumps 
of the laser beam between different polymerized segments, or when a new layer of 
liquid monomer is made. A dynamic focusing lens is also used to ensure the laser 
beam to be exactly focused on the resin surface, at any place on it. The second kind 
of process allows to built a complete layer by only one irradiation, by imaging 
directly its pattern with a masked lamp. But this needs to define a mask each time 
the pattern is changed, and to use a much more stronger intensity of the laser beam. 

When compared to the conventional machining techniques, SL has the 
advantages to need neither moulds nor tools and the parts have almost any shape. It 
principally concerns the rapid prototyping field, and the manufacturing industries 
which are already using this technology include automotive, aerospace, and medical 
industries. The manufactured objects have a typical volume of about a few dm3 with 
a spatial resolution of 100 um. 

3. Extension to micro-StereoIithography 

To improve the accuracy obtained by the SL technique for manufacturing three 
dimensional microobjects, several processes have been studied [8,9]. In order not to 
introduce moving elements which can cause a loss of resolution, no galva-mounted 
mirrors nor dynamic focusing lens to deflect and focalize the light beam are used. 
The focus point of the light beam then remains fixed on the surface of the resin, 
while an x-y positioning stage moves the resin reactor in which the object is made. 
But the reactor must be translated very slowly to ensure the required stability of the 
surface of the liquid resin during the polymerization step. The main limitation of 
this process is the much more important time to manufacture a layer, compared to 
the use of galva-mounted mirrors. 

That is why a new process of micro-stereolithography (u-SL) technique has been 
developed in our laboratory [10], which allowed to manufacture a complete layer by 
only one irradiation, the three-dimensional microobject being still manufactured 
layer by layer. As already given in Ref. [10], this type of u-SL process presents a 
number of advantages, that will be rapidly described now. 

First, the limitation to only one moving operating element leads to a good 
stability during the curing step. Moreover, the light flux density on the surface of the 
resin is low compared to that is used with vectorial processes, which are based on 
very fast displacements of a strongly focussed laser beam on the surface of the resin. 
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As a consequence, thermal-induced problems can be considered as negligible. At 
last, the process has the potential of being much faster than classical vectorial 
processes, since the irradiation of an entire layer is enacted simultaneously. 

But the major disadvantage of this process comes from the liquid crystal matrix 
that presents a bad transmission to ultraviolet (UV) light. So, it is necessary to use a 
light source emitting in the visible spectrum and consequently to use a 
photochemical mixture which is photosensitive to these wavelengths [11]. 

A first apparatus has been achieved using a coherent and visible light source 
(Ar+ laser emitting at 515 nm). It used a liquid crystal display (LCD) as a dynamic 
mask generator [10]. 

Complex objects have then been obtained with a resolution of 5 um in the three 
directions of space [11]. Prototypes of microactuators having a distributed elasticity 
and made of multiple imbricated springs have also been realized. As an example, 
Fig. 2 shows such a microactuator, which was moved by using shape memory alloy 
(SMA) wires in the clamping areas [12]. 

Figure 2. Photograph of a distributed elasticity microactuator after SMA wire assembly [12] 

4. Micro-Stereolithography using a dynamic mask generator and a non 
coherent light source 

We are now developing a new uSL apparatus still based on the use of a dynamic 
mask generator, but using a non coherent broad-band halogenure light source. There 
are in fact several tradeoffs between using a masked enlarged laser beam versus a 
masked lamp to cure the layers of photopolymer resin : 
• A laser is potentially more energy efficient, since a lamp generates a lot of 

useless light outside the range of frequencies to which any particular resin is 
photosensitive. 

• There is some evidence that monochromatic light, as generated by a laser, 
yields more uniform-in-depth curing for thicker layers. But the gaussian 
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intensity distribution of such a laser beam leads to a non uniform curing in the 
covered mask area. 

• The coherence of a laser beam leads to a strong local inhomogeneity of the 
projected image, due to speckle effects. 

• The broad spectrum of a lamp makes it more flexible in the resins it can use, 
whereas a laser must be used with resins specifically tuned to its frequency. 

• The use of a lamp strongly decreases the production cost of the microparts. 

Thus, it may be attractive to conceive a new p.-SL machine from a broad-band 
visible light source. 

4.1. EXPERIMENTAL SETUP 

The experimental setup of the process is given in figure 3. The beam is issued from 
a conventional halogenure light source (dataprojector-based). After its propagation 
through the computer-controlled liquid crystal display (L.C.D) which contains the 
pattern of the layer, the beam is then reduced and focused on the surface of the 
photocurable resin. As in Ref. [10], a LCD is then used as a dynamic mask 
generator. By connecting a computer to this device, every pixel can be set either to 
its transparent or to its opaque state by changing the orientation of molecules, it is 
made of. So, the pixels in their dark state stop the light, in contrast to those which 
are in their transparent state. The contrast ratio of about 1:100 of the LCD is 
sufficient to use it also as a shutter (all the pixels are then in their dark state). 

Dataprojector-based light source Vertical translator 
Mirror 
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Computer 

Figure 3. f£L device using a mask-generator display and a non coherent light source 

Contrary to the conventional SL process, no scraper can be used to add a layer of 
reactive medium on the surface of the part being manufactured because such a kind 
of device could damage the microobjects during their manufacture. So, the time to 
obtain each new horizontal fresh layer of resin depends mainly on its Theological 
properties. As a result, only low viscosity photocurable resins have to be used. 



6 MONNERET et al. 

4.2. SPATIAL RESOLUTION 

4,2.1. Longitudinal resolution measurement 

As in Ref. [11], longitudinal resolution has been evaluated by measuring the depth 
of a single layer polymerized beam, manufactured in the real operating conditions of 
the apparatus. As a remark, the cured depth has to be a little more important than the 
real thickness of the layers that form the object, in order to allow a partial 
overlapping of the layers so that they could be joined together. 

The polymerized beam has been inserted in a simple object with a « U » shape 
(Fig. 5). Such an object can be manipulated without fear of breaking the 
polymerized beam. 

Figure 4. Supported beam to measure the longitudinal resolution 

The experimental results are presented on Fig. 5. They give the evolution of the 
cured depth versus the irradiation time, showing clearly that the cured depth 
increases with irradiation time. 

We have choosen to work with sufficiently large polymerized depths in order to 
manipulate the thread without breaking it. In fact, during the last step consisting in 
taking it away, there are strong strains on the beam due to the effect of capillarity- 
type forces between the surface of the liquid resin and the object. However, during 
the normal manufacturing of multilayer 3D objects, the thickness of each layer can 
decrease to 5 urn because the object is never removed from the resin during the 
process. 
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Figure 5. Cured depth versus the irradiation time 

The experimental results seem to be correct even if the washing operations, 
using solvents, needed before the measurement of the beam depth can damage it or 
cause deformations. However, the damage that can be caused by washing operations 
is stronghly reduced when manufacturing complex objects. This is due to the 
overlapping of the layers, which gives a better mechanical quality to the part. 

4.2.2. Transversal resolution measurements 

In order to make transversal resolution measurements, we used an optical 
microscope that allows to obtain the size of pixels that are contained in the image. 
For instance, the minimal obtained size of pixels is 2 um x 2 um. Fig. 6 gives an 
image of a single layer object and a detail of this object, showing the transversal 
resolution and the reliability of the process. 

Figure 6. Example of a single layer object manufactured by the new process, 
images obtained by an optical microscope. 
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5. Conclusion 

We proposed a new apparatus using a mask-generator display and a broad-band 
visible light source. It seems to be a very interesting process allowing to 
manufacture small, complex in shape 3D micro-objects. 

Nowadays, we are beginning to produce different small 3D objects made of a 
very large number of layers. The insertion of shape memory alloy wires in particular 
3D polymer structures will allow the manufacture of new types of microactuators 
for microrobotic applications. 
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Abstract. By experiments in integrated photoelasticity it has been ob- 
served that besides the usual interference fringes, interference blots may 
appear. The latter are areas where interference fringes have low contrast 
or even vanish totally. It has been shown that the cause of the interference 
blots is rotation of the principal stress axes. Since an arbitrary .inhomo- 
gen eous birefringent medium is optically equivalent to a system of two 
birefringent plates, in this paper conditions of the appearance of the inter- 
ference blots and of the dislocation of integrated fringes is studied using 
this simple model. Computer generated fringe patterns are compared with 
the experimentally recorded ones. 

1.   Introduction 

In integrated photoelasticity, a 3-D transparent birefringent specimen is 
placed in an immersion bath and investigated in a transmission polariscope. 
Since in the general case both the values of the principal stresses and their 
directions vary on the light rays, the principle of superposition of bire- 
fringence is not valid. Actually, the specimen is an inhomogeneous twisted 
birefringent medium [1]. Therefore, optical phenomena are much more com- 
plicated than in 2-D photoelasticity and can be described by the theory of 
characteristic directions [1-5]. 

In the case of strong birefringence, integrated fringe patterns can be 
recorded. Sometimes these fringe patterns exhibit peculiar features. Figure 
la shows the integrated fringe pattern of a diametrically loaded sphere in 
a light-field circular polariscope. Near the points where the load is applied, 
one can observe dark areas that are similar to fringes but somewhat wider 
and that cross the basic system of fringes. These are the interference blots. 

As another example, Fig. lb shows the integrated fringe pattern of the 
wall-to-bottom region of a tempered drinking glass. One can observe inter- 
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Figure I.      Integrated fringe patterns or a diametrically loaded sphere (a) and of the 
wall-to-bottom region of a tempered drinking glass (b) in a light-field circular polariscope. 

ference blots (shown by arrows) that cross the main fringe system, disloca- 
tion of the fringes, etc. 

Fringe patterns in Fig. 1 contradict to the conventional theory of fringes 
in birefringent objects. According to the latter, fringes of different order can 
never intersect one another, and between the adjacent dark fringes there is 
always a bright fringe. 

Preliminary analysis of the integrated fringe patterns is presented in 
Rets. 6, 7 and's. The aim of the present paper is to study in greater detail 
the reasons of the peculiarities in integrated fringe patterns. This problem is 
important not only in photoelasticity but also in intcrforometry and optical 
tomography of inhomogencous birefringent phase objects. 

According to the Po'mcare equivalence theorem [9], an arbitrary inhomo- 
gencous birefringent medium is optically equivalent to a system containing 
only two birefringent plates, the principal optical axes of which form an 
angle. Therefore, in this paper the analysis of the interference blots and 
of fringe dislocations in an inhomogencous birefringent medium is mostly 
based on this simple model. 

2.   Theory of the Fringe Pattern Formation 

It is known that the main reason of the complicated optical phenomena in 
integrated photoelasticity is rotation of the secondary principal stress di- 
rections. If the secondary principal stress directions are constant on the ray, 
integrated optical retardation A is expressed through the integral Werthcim 
law 

A = C l(crl -(T,)r/.s, (2.1) 
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where C is photoelastic constant and c^, CT2 are secondary principal stresses. 
Light intensity in a dark field circular polariscope is determined by 

/^/osin2!, (2-2) 

and in a light field circular polariscope by 

J3 = /Ocos2|. (2.3) 

If in the specimen distribution of stress is continuous, integrated fringe 
patterns determined by Eqs. (2.2) or (2.3) are also continuous, light inten- 
sity between fringes varies between 0 and Jo, and no peculiarities in the 
fringe pattern will occur. 

In the case of rotation of the secondary principal directions, in formulas 
(2.2) and (2.3) instead of A appears the characteristic optical retardation 
A*. The latter is not determined by Eq. (2.1) due to the effect of rotation 
of the axes, and is related to the stress distribution on the ray in a com- 
plicated manner [1,2]. That is the reason of the curious optical phenomena 
we observe in integrated fringe patterns, 

Considering a system of two birefringent plates with optical retardations 
A! and A2, and ß the angle between the principal axes of the plates, the 
characteristic retardation can be written as 

cos A* = cos( Ax + A2) cos2 ß + cos(A2 - A?) sin2 ß. (2.4) 

In rectangular coordinates x and y we have Ai = A\(x,-y), A2 = 
A2(x,i/), ß = ß(xty), and A» = A»(i,y). Coordinates x and y are per- 
pendicular to the direction of the wave normal. 

If an inhomogeneous birefringent model is investigated in a dark-field 
circular polariscope, then the light intensity is determined by 

/^^(l-cosA«), (2-5) 

and in a light-field circular polariscope by 

/2 = J/o(l + cosA»). (2-6) 

Consequently, formation of the fringe pattern is completely determined 
through the function cos A*. From Eq. (2.4) follows that the function cos A» 
is a complicated function of periodic trigonometric functions of in general 
aperiodic functions Ai, A2 and ß. 

The distinct fringe structure occurs in regions where one or two of the 
functions Ai,A2 and ß change more rapidly than others. Figure 2 shows 
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Figure   2 Computer-generated   fringe   patterns   of  an   optical   system   containing 
two birefringent plates: left: ß = 30x + y, A, = x - 2y, A2 = 2x + y; right: 
ß = x + y,  Ai = x - 2i/,  A2 = 30i + 1/. 

computer-generated fringe patterns in a dark-field circular polariscope in 
the cases of different change rates of the functions Al5 A2 and ß. The dis- 
tinct fringe patterns can be distorted by two types of irregularities: inter- 
ference blots [6-8,10] and fringe dislocations [11-13]. 

3.   Interference Blots 

We define the interference blot as a region in the fringe pattern where the 
contrast of fringes is diminished or vanishes completely. This is a region 
where cos A» changes slowly. 

Consider the neighborhood of the line ß(x,y) - ~/2: 

where |?/(:r, y)\ < 1. 
In this region we have 

cos ß = - sin rj 

sin ß = cos 77 fa 1 

-V, 

v2 

Therefore, we can write Eq. (2.-1) as 

cos A, ~ cos(A2 - A]) - 2/72cosA1 cos A2. 

Let us write A2 - Ai in the form 

A2 - Ai = ±'2n~ -f- ii(x,y). 

f3.r 

(3.2) 

(3.3) 

(3,1) 
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where \/.i(z,y)\ < 1. 
Then Eq. (3.3) reveals 

„2 
cos A, «1-*-- 2»72cos2Ai. (3.5) 

From Eqs. (2.12) and (3.5) we have 

Ji*/o(^3 + '?2«»2A1). (3.6) 

In the same way we obtain 

A2- &x = (l±2n)7r + /i, 

/I«/O(1-^
2
-T?

2
COSA1). (3.7) 

Consequently, in the neighborhood of the points (x,y) determined by 
equations 

ß(x,y) = */2,    A2{x1y) = Al(x,y)±2n*, (3.8) 

or 
ß(x,y) = it/2,    A2(a;,j/) = A1(x,i/) + (l±2n)7r) (3.9) 

dark or bright areas must appear. The same holds for the neighborhood of 
the points (x,y) determined by Eqs. (3.8) and (3.9) if ß{x,y) = ~/2 + rnr. 

Interference blots are seen in Fig. 2 on the left. 

4.   Fringe Dislocations 

Fringe dislocation is an imperfection of the fringe pattern where the normal 
pattern is distorted by the interposition of one or more extra fringes [11- 
13]. Using the analogy with crystal structure we can describe the fringe 
dislocation in terms of the Burgers circuit [11,14]. The Burgers circuit is 
any fringe-to-fringe path in the fringe pattern containing fringe dislocation 
which forms a closed loop (Fig. 3a). If the same fringe-to-fringe sequence 
is made in a dislocation-free pattern, the circuit does not close (Fig. 3b). 
The Burgers vector required to close the circuit describes the magnitude 
and direction of the slip in the fringe pattern. Notice that to the distance 
between fringes corresponds the phase shift 27T. Therefore, to the Burgers 
vector corresponds the phase shift ±n2n. 

Let us show that fringe dislocations are induced by beat of fringes. 
The right side of Eq. (2.4) can be considered as a composite fringe 

complex which is formed by two sets of fringes (waves) with different fre- 
quencies. If we assume that Aj < A2 then the frequencies of the waves are 
close to each other. In that case the beat phenomena of fringes occurs. 
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Figure S.     Burgers circuit ABCDE around a fringe dislocation (a); Burgers circuit in a 

perfect fringe pattern (b). 

Equation (2.4) can be written as 

cos A, = j4sin(A2 + ¥>)• t4"1) 

Here the amplitude and the phase of the composite wave are given by 

(4-2) 

and 

A = >/cos22/3sin2Ai + cos2 Ai, 

cos Ai 
tan (p = - 

cos 2/3 sin A] 
(4-3) 

The amplitude A describes an envelope as a curved surface enclosing 
the surfaces of fringes (waves). The beat phenomena originate from the low 
frequency of this envelope. 

If in Eq. (4.3) cos2 ß = cos A, = 0, we have 

tan if 
0 ,4.4) 

i.e. the phase ip is indeterminate and dislocation of fringes occurs (Fig. 2, 
right). 

5.   Boussinesq Problem 

Let us consider now optical phenomena in the case of a classical problem of 
the elasticity theory, the Boussinesq problem, when a vertical concentrated 
load acts on the surface of a half-space. Integrated fringe patterns in an 
epoxy cube of 40 X 40 X 40 mm in a light-field circular polariscope for 
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Figure 4.    Experimental integrated fringe patterns in a light-field circular polariscope in 
the case of the Bonssinesq problem, Pi > P\- 

= 1800 

Figure 5.    Computer-generated fringe patterns for the Boussinesq problem in alight-field 
circular polariscope for various loads P (in relative units). 
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different loads are shown in Fig. A. In the case of Pu interference blots are 
clearly visible. In the case of P2, interference blots have vanished because 
of high birefringence. Note that, owing to difficulties in effectuating experi- 
mentally a point load, the stress distribution in Fig. 4 deviates to a certain 
extent from the theoretical one. 

To etablish the dependence of the interference blots on the load (or 
value of the birefringence), integrated fringe patterns for the Boussinesq 
problem were generated on the computer for different load values (Fig. 5). 

In Fig. 5 we see both interference blots and fringe dislocations, similar 
to those generated above for the optical system containing two birefringent 
plates. In the fringe pattern for P - 1800, the Burgers vector is Air. 
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6.   Conclusions 

If has been shown both experimentally and numerically that in integrated 
fringe patterns interference blots and dislocation of fringes may appear. 
Due to that the fringe order may be ambiguous. 
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Abstract 

We show a non destructive method to obtain the isochromatic and isoclinic fringes in 
three dimensional photoelastic specimens. The basic idea is to delimit a slice between 
two plane laser beams. The properties of polarization of the scattered light (Rayleigh 
law) and the interference possibilities of the diffused beams are used. By introducing 
speckle pattern properties, the correlation factor of the two scattered beams is similar to 
the illumination given in a plane polariscope for the investigation of a slice (in a 
classical frozen-stress technique). We use a monochromatic laser beam, a CCD camera 
and a PC. As we can not obtain directly the correlation factor, we do a statistical 
analysis of the speckle patterns. The variance (function of the correlation factor) is 
computed from the light intensities of three images corresponding to the speckle pattern 
for plane 1 alone, plane 2 alone, and both planes together. 

1. Introduction 

The experimental study of stresses in three dimensional models under solicitation still 
remains a problem. The method usually employed is the frozen stress technique coupled 
with a mechanical slicing and a two dimensional analysis of each slice in a classical 
polariscope. But the mechanical slicing of models in different planes takes a lot of time 
and imposes to manufacture several models for a general study. 
To avoid these difficulties, we have developed a non destructive method of optical 
slicing using the properties of polarization of the light scattered by a photoelastic 
material (Rayleigh law). This phenomenon was used by R. Weiler [1] and by many 
authors for punctual methods [2]-[6]. Our method is based upon a whole field technique 
developed in our laboratory several years ago [7]-[9]. But this technique using 
holographic film, polychromatic laser beam, spectroscope and optical filtering was very 
complex which greatly limits its domains of application. So we have developed a 
method much simpler and faster using numerical recording and analysis. 
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2. Principle 

2.1 INTRODUCTION 

The basic idea is to use the properties of polarisation of the scattered light (Rayleigh 
law). If one observe along the Z vector, perpendicular to the direction of the propagated 
light beam X, the scattered light is polarised rectilinear along Z A X (fig. 1). 

Birefringent 
slice Beam 

Separator \^—-T->^ 2 

y* device 

Scattered 
ieht 

Figure 1. Isolation of a slice with two plane laser beatns 

The principle of the method is to isolate a slice of the photoelastic mode! between two 
parallel plane laser beams (fig. 1). The speckle field observed in the direction 
perpendicular to the plane of the two illuminated sections is due to the interferences 
between the light scattered by each section. Their possibilities of interferences depend 
on the birefringence of the isolated slice. But experimentally, the direct visualisation of 
the photoelastic fringes is impossible. To obtain this information, the characteristics of 
the scattered light are studied. 

2..2 EXPRESSION OF THE SCATTERED LIGHT 

The photoelastic model is lighted by only one beam (1 or 2), then by both. The scattered 
light intensities are respectively named I|, I2 and I. These images are recorded thanks to 
a CCD camera. The values in grey level of the intensities along one line of these images 
is plotted on fig. 2. 

10001 Intensity (grey level) 

 ■ i" ' i'' ■' i'' "i i Pixels 
500 

Figure 2. Light intensities profile 
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By studying one intensity profile (for example Ij), we observe that the speckle field is 
coupled with a background intensity due to the fluorescence phenomenon of the 
specimen and a part of the scattered light not polarized [10]. 
The light intensity I; (i=l or 2) is expressed as : 

ii=I>B+Iis W 
where IiB is the background intensity, IiS is the speckle field intensity. 

2.3 SUPERPOSITION OF THE TWO LIGHT FIELDS 

The result of the superposition of the two light fields depend on their interference 
possibilities. If they can interfere in a coherent way, they superpose in amplitude. 
Otherwise, they superpose in intensity [11]. We studied the superposition of L and I2 

using their interference possibilities and their statistical properties [12]. 
The light field I1S and I2S are due to coherent light. So they superpose in amplitude. The 
result is : 

h = *is + *2S + 2 YV^IS" yjhs cos(\|f, - y2 + n) (2) 
where y is the correlation factor of the two speckle fields, \|/i, \]f2 their random 
phases, r| is function of the optical characteristics of the slice. 

As the slice is represented by a birefringent plate and a rotatory power, the expression of 
the correlation factor y is given by : 

y2 =cos2R-sin2asin2(cc + R)sin2— (3) 

where R is the rotatory power of the slice, a the neutral lines, (p the angular 
birefringence. 

This expression is similar to the one usually obtained when analysing an identical slice 
(done for example by frozen-stress technique and mechanical slicing) between two 
parallel polarisers. Thus thanks to the correlation factor, the isochromatic and isoclinic 
fringes of the isolated slice can be visualised. 
In the case of thick slices and for a small rotation of the principal secondary stresses 
(less than 30°), a low modulation of y corresponds to a isoclinic line where a principal 
secondary direction is parallel to the polarisation direction and the isochromatic fringes 
appear with integer order for maximal values and half order for minimal values [11]. 
If the rotatory power is negligible (thin slice), equation 3 becomes : 

y2 =l-sin22orsin2-^ (4) 
2 

The spatial average of Is is calculated thanks to speckle properties [12] of the random 
variables I|S, Ls. Vi et \|/-> (ergodicity, stationary, independence of variables...). 

Using the same hypothesis, we calculate the variance of Is. 
cs

2 = ols
2 + o2S

2 + 2 y2(lls) (l2S) (6) 

The light field I1B et I2B are due to incoherent light. So they superpose in intensity. The 
result is: ^B~^IB

+
^2B (7) 
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We calculate the spatial average and the variance, and obtain : 

<IBHIIB) + (I2B) and oB
2=a1B

2 + o2B
2 (8) 

Also, IB and Is (or I,B and I,s) (or I2B and I2S) can not interfere, so we obtain : 

I = IB + IS       and       <l) = (lB) + (ls>       and       cr=oB
2 + os

2 (9) 

2.4 PROPERTIES OF THE RESULTING FIELD 

Using the results obtained below, the expression of the global light intensity is : 

I = Il+I2+2YVtV^7cos(Vi-V2+1l) (10) 
Its spatial average is: (i) = (l|) + (l2) (H) 

and its variance : a2 = a,2 + a2
2 + 2 y2{lis) {lis) (]2) 

If we consider that the intensities of the two incident beams are equal and the average of 
scattered light are equivalent, we take: 

Pis) _ (^s) _ . n3) 

(h) ' (h) ' 
k is a factor, function to the scattered properties of the material. Experimentally we have 
to note that it is approximately equal to 1/10. 
Equation 12 becomes:       a2 = a,2 + o2

2 + 2 k2 y2(l,) (l2) (14) 
From this equation, wc deduce equation 15, proportional to the correlation factor: 

k2Y2 = 0
2-Ol2-022_ (15) 

7 2(I1)(I2) 

3. Experimental set-up 

The experimental set-up (fig. 3) is composed by an argon laser, a separator device and a 
cylindrical lens in order to obtain two plane laser beams. A CCD camera (perpendicular 
to the laser beams) and a PC are used for the data acquisition and processing. A Babinet 
compensator is placed between the lens and the cylindrical lens to minimise the 
intensities of the Weller's fringes (the scattering phenomenon is used like analyser). 
These fringes have no influence on the results if their maximal intensities arc less than 
10 % of the global intensity (phenomenon studied by numerical simulations [13]). 
A specific care must be taken to choose the CCD captor. Indeed the speckle field 
intensity is very low compared to the background intensity (Fig. 1). So a CCD camera 
with a low signal-noise ratio is chosen. Some tests are made with a classical camera with 
512x512 pixels coded by 256 grey levels. In taking care to have low electronic 
amplification which gives a ratio of 40 dB, we obtained good results. But the small 
sensitivity and resolution could limit the tests for all specimens. The CCD camera used 
for the presented tests, has a high resolution (1000x1000 pixels coded by 1024 grey 
levels) and a ratio of 50 dB. 
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Figure 3. Experimental set-up 

4. Obtention of the photoelastic fringes 

The model is placed on the way of the laser beams which are oriented to isolate the slice 
to study. If the model  is not in optical index liquid tank, the beams have to be 
perpendicular to the surface of the model to avoid refractions. 
Three images I,, I2 and I corresponding to the speckle pattern for plane 1 alone, plane 2 
alone, and both planes together are recorded thanks to the CCD camera and used to 
calculate a fourth image of k2y* using equation 15. 
To diminish the calculation time, it is also possible to calculate first: 

r=i-i I, (16) 

(17) 

Then we calculate the variance of I' : a'2. And the expression of k'-f becomes : 
,2 

For each pixel (i,j), the different coefficients appearing in equation 17 are calculated 
with a calculation area of (2N+l)x(2N+l) pixels centred on (ij). 
For i and j varying, the spatial average of I' is calculated thanks to equation 18. 

<I'(i.j)>= 

/"k = rN]=+N 

/(2N + 1)2 

Vk=-Nl=-N 
When the spatial average is calculated, we can obtained the variance : 

CT,2(i,j)=<[r(i.j)-<r(i.j)>]2> 
'k=+NI=+N ^ ^ 

=   £  £[I'(i + k,j+l)-<r(i + k,j + l)>]2 |/(2N + 1)- 

Vk=-Nl=-N ) 

(18) 

(19) 
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Equation 18 is also used to calculate <I,> and <I2>, by replacing V by I, and h. 
Then, we use equation 17 to calculate kV for each pixel (ij). Thus, we obtain the image 
of the isoclinic and isochromatic fringes. To eliminate a part of the speckle on the final 
image, a low-pass filter can be used. 
The" resolution of this image is function of the speckle depth and the size of the 
calculation area for the spatial average. Thanks to multiple simulations [13], we can 
show that with a speckle size of 1 pixel and an area of 3 by 3 pixels, the minimal visible 
period is about 15 pixels. This limitation becomes 30 pixels using a low pass filter (10 

by 10 pixels). 

5. Experimental results 

The models used for the experimental tests are made in epoxy resin (photoelastic 

constant: 30 10"'2 m:/N). 
The first experimental test is a torsion strain on a bar of square section (34x34 mm"). 
The images experimentally obtained correspond to slices inclined at an angle of Tt/4 
respect to the axis of the model (fig. 4). Thus the birefringence and the directions of the 
principal stresses vary along the observation direction. 

CCD camera 
specimen 

Figure 4.: Torsion slrjin on a bar of square section 

Figure 5 shows the three recorded images I,, h and I, for a thickness of the slice equal to 
6 mm. On figure 5-c, we slightly distinguish the Weiler fringes. Their intensity is lower 

than 10% of the global intensity. 

Figure 5.: Experiment speckle patterns 

Using these images, kT is calculated for an area of 3x3 without low pass filter (fig. 6-a) 
and with low pass filter (fig 6-b). We observe two bright and large isoclinic zones and 
the isochromatic  fringes. The  fractional  fringe order could be  find  with a manual 
procedure, but a full field automatic calculation seems to be still hard to develop. 
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a) without low pass filter b) with low pass filter 
Figure 6.: Fringe pattern 

Our experimental set up allows to record the images for thickness varying from 0,5 mm 
to 10 mm. A small thickness is interesting to study zones with high stress concentration. 
For the same loading, the slice thickness varies from the smaller to the higher value. 
Each time, the three images Ii, L and I are recorded and the correlation factor 
calculated. These images are represented on figure 7. The number of isochromatic 
fringes increases with the thickness of the slice and the isoclinic fringe is constant except 
when the slice is thick (fig. 7-d). In this case, the isoclinic fringe disappears in the centre 
of the image where there is a large rotation of the stresses (we are not in the hypothesis 
of thin slice). So, we see continuous isochromatic fringes in the centre. 

a) 0,5 mm b) 2mm c) 4mm d) mm 
Figure 7. Experimental isochromatic and isoclinic fringes for several thickness of slice 

The second test is a punctual loading on the top of a prismatic specimen 
(section = 60x45 mm2 and length - 110 mm) (fig. 8). A quick scanning of the model has 
been realised with 2 mm of translation between each slice. In order to see a large 
number of fringes, we have choose a test with slice thickness equal to 6 mm. It is 
possible to find the stress concentration area and to study a part of it (by zooming in and 
by a reduction of the thickness of the slice.) 

^^■»ffita Specimen 
* 'J0. IS» Loadi ng 100 daN 

:«2 

Optical slicing results ^ji'^g 

2 mm \    ]$£- ^B 

Plane laser 
beams 

Direction of 
observation 

23 mm 
Figure 8. Scanning of a prismatic specimen submitted to a punctual loading 

Mo-P3 
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6. Conclusions 

We present a new method using optical slicing coupled with a CCD camera and a PC to 
visualise rapidly isochromatics and isoclinic fringes of a slice, within a photoclastic 
material. The slice is delimited by two laser beams and the scattered light is numerically 
analysed to obtain the correlation factor. The experimental set up is easy to realise and 
once the images are recorded, the calculation are done in few seconds. Our slicing 
method takes into account the parameters inside the isolate slice but not the optical path 
through the specimen. The minimal slice thickness (because of the device) is about 
0.5 mm and the maximal value is about 10 mm. In three dimensional photoclasticity, the 
rotation of the secondary principal stresses in the thickness of the studied slice can not 
be neglected. So the slice is represented by a photoelastic plate and a rotatory power. If 
the thickness is sufficiently small, the rotatory power has no effect on the isoclinic and 
isochromatic parameters/The largest studied field is about 150x150 mm* (0.15 
mm/pixel) and the smallest 5x5 mm2 which permits the study of contact zone. The 
model immersed in optical index liquid tank can be examined in different views. For a 
small size of image (128x128 pixels) a quasi-real time visualisation can been realised. 
A fast study of a specimen can be done in order to visualize the stresses concentration 
and the direction of the secondary principal stresses. So the first application, for an 
industrialist, could be the optimisation of the shape of models. 
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Abstract 

The aim of this study is to develop a procedure consisting in comparing real photoelastic 
fringes with the fringe pattern calculated with a theoretical or numerical stress field. This 
process can be used to validate for example the boundary conditions or mesh of a three- 
dimensional mechanical problem. We show three optical approaches of a three- 
dimensional specimen giving the classical photoelastic fringes (isochromatic and 
isoclinic patterns) from a theoretical stress distribution. So we used a new experimental 
technique for the study of stress fields in a three-dimensional medium. We show a 
comparison between these three formulations and experimental results obtained by our 
non-destructive method of optical slicing. 

1 Introduction 

The study of the stress state of a three-dimensional specimen may be effected by 
numerical means (like finite elements method). But for industrial problems, an 
experimental study is necessary to validate the theoretical and numerical approach as a 
boundary conditions, shape and mesh. Usually this is done by photoelasticimetry. 
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Let us remind that into a plane polariscope, a two-dimensional analysis of a beam, 
which can be mechanically sliced after stresses freezing, allows us to visualize two 
fringes patterns. The direction of principal stresses is obtained from isoclinic fringes, 
their difference is given by isochromatic fringes. We used in this paper an another 
experimental solution, developed in our laboratory. This technique is a non-destructive 
method of optical slicing giving the classical photoelastic fringes [Plouzennec, N., et al. 
1998] [Dupre\ J.C., et al. 1997] [Dupre\ J.C., et al. 1996]. 

Many studies have been achieved to separate the stresses, their orientations and to 
integrate the equilibrium equations [Dally, J.W., et al. 1991] in order to compare them 
with the simulated results. However this method demands a high precision of 
measurement, a separation and an unwrapping of the isoclinic and isochromatic 
parameters. Then we present another solution avoiding most of these inconvenients. It 
consists in calculating the isoclinic and isochromatic fringes from a three-dimensional 
stress field obtained theoretically; for example by finite elements and in comparing them 
with experimental results. Nevertheless we have to correctly determine the optical 
parameters due to the stress fields. The aim of this work is to study three approaches of a 
thick medium and to compare them with experimental results. 

2 Optical approaches of a three dimensional medium 

We calculate the photoelastic fringes coming from a plane polariscope by three ways. 

2.1 TWO-DIMENSIONAL APPROACH 

In this case, the difference and direction of the stresses are constant along the thickness 
of the specimen. 

The light intensity obtained in a plane polariscope is expressed by : 

I = I0 1-sin2 2asin2 <P- (1) 2. 

Io is the light intensity when the model is unloaded, a is the direction of one of the 
principal stresses. The birefringence <p is given by : 

2TCC 
<P = -JJ—(a,-o2)e (2) 

e represents the slice thickness shown in figure 1, (d - a2) is the difference of the 
principal stresses, C is the photoelastic constant and X is the wavelength of the used 
light. 

2.2 ABEN SCHEMATISATION 

The Aben's works (1966) allow us to obtain the mechanical parameters 9, a from the 
knowledge of three physical parameters R, a*, 9* with the hypothesis: (dcc/dz = cto) and 
(<*' - cr"), the secondary principal stress difference, constant along the thickness of the 
specimen. The studied beam is schematized by a birefringent plate (a* and <p*) followed 
or preceded by a rotator power R (figure 2). The values R, a*, 9* and a, cto, 9 are 
linked by the following relations [Brillaud, J., et al. 1983] [Desailly, R., et al. 1984] : 
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or preceded by a rotator power R (figure 2). The values R, a*, (p* and a, oco, <p are 
linked by the following relations [Brillaud, J., et al. 1983] [Desailly, R., et al. 1984] : 

Mo-P4 
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ar 

tgR = 
tga0--^tgX „2 

1 + ^tg«otgX 
-,     cos<p* = l—^-r-sin2X 

V? + 4an 

2XZ 

R   «o 
2     2 

(3) 

Figure 1 : The first approach Figure 2 : Aben schematization 

On figure 2, we show the optical parameters : (A'e, A's) the characteristic directions 
of entrance and exit, and the mechanical parameters (o,

e , <fs) the principal secondary 
directions. The light intensity coming from the plane polariscope [Desailly, R., et al. 
1984] is then : 

1 = 1 Jcos2 R - sin2oc *sin2(oc * +R)sin2 <p * lli (4) 

2.3 DISCRETE ANALYSIS INTO THIN SLICES 

This technique consists in taking a thick beam and dividing it into n thin slices shown in 
figure 3. Every thin slice is characterized by oq and (ft constant along the thickness (like 
the first approach) [Zenina, A., et al.1997] [Aben, H., et al. 1997]. 

An iterative process has been developed for the numerical calculation of the light 
components after crossing the first slice from a direction of given polarization (xo, yo). 
From these new components (Xi, yj) the calculation is repeated again for the following 
beams until the last slice. 
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The components of the light after the last slice are (xn, yn). After crossing the 
analyzer (angle ß figure 3), the light intensity is written as : 

1 = 1 (Re(xn) cos ß+ Re(y n) sin ß)2 + (Im(xn) cosß + Im(y n) sin ß)2 
(6) 

Re and Im are the real and the imaginary part. 
Numerical simulations have shown that the ratio between OQ and the number of the 

unitary beam is 1/3. 

Figure 3 : Series of thin slices 

2.4 COMPARISONS 

We have numerically simulated the three approaches by varying (p from 0 to IOTC 

horizontally and a from -TC/4 to TC/4 vertically and by applying different values of OQ. A 
series of images obtained is presented in the figure 4. 

The first image (figure 4A) corresponds to the first approach, the second one (figure 
4B) corresponds to the Aben's formulation and the last (figure 4C) represents the 
discrete calculation of a series of thin slices. 

We note that the image obtained by the first approach, which can not introduce a 
variation of the stresses along the thickness, is different than the other. The second and 
the third images are obtained for a variation OQ of 30 degrees of the stresses direction. 



OPTICAL APPROACHES OF A PHOTOELASTIC MEDIUM 5 

Furthermore the Aben's formulation can not be used for a variation of the stresses 
difference along the thickness. 

We have to note that numerical problems appear in the Aben's schematization 
(paragraph 2.2). They are due to trigonometric calculation (equation 3), that is why this 
procedure is relatively complex. 

Hilf 

iiit 

mmmmm 

mini 
Approach 2.1 Approach 2.2 Approach 2.3 

Figure 4 : Simulations for Oo = 30° 

If we consider a variation of the stresses difference along the thickness of the 
specimen, we can apply only the third schematization (approach 2.3), for example we 
obtained this image. 

Approach 2.3 

Figure 5 : Simulations for Oo = 30° with a variation of the stresses difference along the thickness 

3 Application 

3.1 EXAMPLE OF A TWO-DIMENSIONAL STUDY 

The discrete calculation of a series of thin slices can be used from results obtained by 
finite elements method. In the following example (figure 6) of a plate of 10 mm of 
thickness submitted to the torsion - bending compound, we have calculated the stress 
field with a corresponding mesh formed by 90x20x5 cells. The third approach gives 
more realistic images and corresponds to experimental images obtained by a plane 
polariscope. 

Mo-P4 
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11 rr 
Two-dimensional schematization (Approach 2.1) 

Three-dimensional schematization (Approach 2.3) 

Figure 6 : Comparison for a test of the torsion-bending compound 

3.2 EXAMPLE OF A THREE-DIMENSIONAL STUDY 

If wc study more complex problems, we must slice the specimens in several parts. The 
calculation of the fringes can be easily made by our approach (2-3) but for the 
experimental study we used a method developed in our laboratory. The photoelastic 
model is optically sliced by two plane laser beams. The analyze of the scattered light 
gives fringes equivalent to the ones obtained in a plane polariscope [Plouzcnncc, N., ct 
al. 1998] [Dupre, J.C., et al. 1997] [Dupre. J.C., et al. 1996]. 

As we can modify the thickness of the slice : 0.5 mm to 10 mm. we used this 
technique in order to validate the presented approaches. 

On figure 7, simulated and experimental results are presented for a torsion strain on a 
bar of square section. Using a theoretical expression of the stress field [Caignaert, G., et 
al. 1988] [Timoshcnko, S., et al. 1961], we have simulated the different fringes pattern 
for the three shematizations (formula 1, 4 and 6). 

The obtained images correspond to slices inclined at an angle of nJ4 respect to the 
axis of the model (figure 7). The experimental results show that the 2.3 and 2.2 design is 
more faithful to the reality than the first one (2.1), especially as for the disappearance of 
the isoclinic fringes. A difference appears between the two three-dimensional 
approaches because in this case we have an evolution of the stresses difference along the 
thickness. This condition is not respected by the Aben's theory. 

In order to validate the boundary conditions, a difference on the rotation of \07t can 
be detected by comparing the figure 7 (approach (2.3)) and the figure S. 
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e=2 mm e= ö mm 
Two-dimensional approach (2.1) 

Aben's approach (2.2) 

Series of thin slices approach (2.3) 

Experimental images     
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Figure 7 : Experimental and simulated fringes (imposed rotation 4° 

e = 2 mm 

Figure 8 : Simulated fringes for a rotation equal to 3.6°. 
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4 Conclusion 

Our purpose is to compare real photoelastic fringes with the fringe pattern calculated 
with a theoretical or numerical stress field. This process allows us to validate a boundary 
conditions and mesh of a three-dimensional mechanical problem. We present three 
approaches of a photoelastic medium. The results obtained by the discrete approach of 
the three-dimensional medium by a series of thin slices present the best agreement with 
the experimental results. 

The advantage of this method is its numerical simplicity and no hypothesis on a and 
9 is made at the level of the thick beam. So we will use our process to compare the 
simulated fringes with the experimental fringes. A difference between both can be due to 
only a bad mechanical design. This technique associated with the optical slicing method 
can be used, in industry, for fast investigation and validation for specimens realized by 
molding or stereolithography. Nevertheless, the separation of the isoclinic and 
isochromatic parameters [Z£nina, A., et al. 1998] and the calculation of the stress tensor 
is the next step of our work. 

References 

Aben, H., 1966, Optical phenomena in photoelastic models by the rotation of principal axes, Experimental 
Mechanics, vol. 6, n°l. 

Aben, H., and Josepson, J., Oct. 1997, Strange interference blots in the interferometry of inhomogeneous 
birefringent objects, Applied Optics, vol. 36, n°28, pp. 7172-7179. 

Brillaud,   J.,   Desailly.   R.,   and   Lagarde,   A.,   1983,   Parametres   optiques   en   photoelasticimgtrie 
tridimensionnelle, Revue Francaise de Mecanique, n°1983-4. 

Caignaert, G., and Henry, J.P., 1988, Cours et exercices d'elasticite", Dunod. 
Dainty, J.C., 1975, Laser Speckle and related phenomena, Topics in Applied Physics, 9, Springer Verlag. 
Dally, J.W., and Riley, F.W., 1991, Experimental stress analysis, McGraw-Hill, Inc. 
Desailly, R., and Lagarde, A., 1984, Methode de decoupage optique de photo61asticim6trie tridimensionnelle, 

application, Revue Francaise de Mecanique, n°1984-l. 
Dupr6, J.C., Plouzennec, N., and Lagarde, A., 1996, Nouvelle m£thode de decoupage optique ä champ 

complet en photo61asticim6trie tridimensionnelle utilisant des moyens numeriques d'acquisition et 
d'analyse des champs de granularity en lumiere diffusee, C.R. Acad. Sei, Paris, t, 323, Serie II b, pp. 239- 
245. 

DupnJ, J.C., and Lagarde, A., Dec. 1997, Photoelastic analysis of a three-dimensional specimen by optical 
slicing and digital image processing, Experimental Mechanics, Vol. 37, No.4, pp. 393-397. 

Plouzennec, N„ Dupre, J.C., and Lagarde, A., Sept. 1998, Visualization of photoelastic fringes within three 
dimensional specimens using an optical slicing method, Symposium I.U.T.A.M. « Advanced Optical 
Methods and Applications in Solid Mechanics », Poitiers, France. 

Timoshenko, S., and Goodier, J.N., 1961, Theory of elasticity, Mc Graw-Hill, Inc, 2th edition. 
Zenina, A., Dupre, J.C., and Lagarde, A., Sept. 1997, Decoupage optique d'un milieu photoelastique 6pais 

pour l'emde des contraintes dans un milieu tridimensionnel, 13*™ Congres Francais de Mecanique, 
Poitiers, France, vol. 4, pp. 447-450. 

Zenina, A., Dupre, J.C., and Lagarde, A., Sept. 1998, Plotting of isochromatics and isostatics patterns of slice 
optically isolated in a three dimensional photoelastic model. Symposium I.U.T.A.M. « Advanced Optical 
Methods and Applications in Solid Mechanics », Poitiers, France. 



Mo-P5 
p.l 

AN APPROACH TO GENERAL 3-D STRESS ANALYSIS 

BY MULTIDIRECTIONAL SCATTERED LIGHT TECHNIQUE 

Takahiro 01 and Masahisa TAKASHI 

Aoyama Gakuin University 

6-16-1, Chitosedai, Setagaya-ku, Tokyo 157-8572, Japan 

Phone: +Sl-3-5384-U93,Fax: +81-3-5384-6311 

E-mail: ohi@shaqua.me.aoyama.ac.jp 

Abstract 

The scattered light photoelasticity has an excellent feature and advantage of the 
nondestructive analysis of stress components on a plane layer of incident light path. 
When analysing general three dimensional stress fields, however, the effect of 
bircfringent axis rotation has to be taken into account. Because of difficulties of this 
type, the technique has been limited only in application to the case of plane stress or 
symmetrical stress distribution. 

In this study, the authors propose a method for how to determine not only the 
secondary principal stress difference but also its direction using multiple image data 
obtained by combination of the angles of incident polarization light and observation. 
As an example, a sphere under a pair of diametrical compression is analysed to 
determine both the principal stress difference and direction in layers with or without 
the rotation of principal birefringent axis. Then, the results are compared with 
theoretical analysis and fairly good agreement was obtained between them. 

1. Introduction 

It is desirable to know precise and accurate distribution of stress perform optimum 
design on 3-D subject. However, there has not been developed reliable method for 
analysis of stress components inside 3-D body under load. 

The scattered light photoelasticity has an excellent feature and advantage of the 
nondestructive analysis of stress components on a plane layer of incident light path. In 
general three dimensional stress fields, however, scattered photoelastic intensity 
superposes the effect of birefringent axis rotation due to change in the direction of 
secondary principal stress along the light path takes place. In addition, the intensity 
comes up by the integration of optical effects along the light path. It has not been 
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successful to separate its effects conveniently. Thus the technique has applied to 
limited cases such as the analysis of stress on symmetrical plane. 

In this study, the authors propose a method how to determine not only the secondary 
principal stress difference but also its direction using multiple image data obtained by 
combination of the angles of incident polarization light and observation. As an 
example, a sphere under a pair of diametrical compression is analysed to determine the 
principal stress difference and direction in symmetrical and unsymmetrical layers. 
Then, the results are compared with theoretical results. 

2. Intensity of Light Through a 3-D Model 

From matrix calculation based on Stokes vector, the relation between optical devices 
and intensity of scattered light are derived. Referring lo the arrangement of optical 
elements shown in Fig.l. The final Stokes vector S [1][2] observed by a camera in this 

optical setup is obtained as follows. 

5=M   xAf(e)M,{ö)S0 

(1) 

l-sin2(a-<p)sin2(t/>-0-<p)cos(5-cos2(a-<??)cos2(i//-0-<p) 

1   - cos 2xp{- sin l{a - <p)siu 2(i// - 0 - <p)cos ö - cos lip. - cp)cos l[ip-6- q>)} 

~ 2   -sin2v{-sin2(a-gp)sin2(i^-0-(p)cos(5-cos2(a-99)cos2(i/'-e-fl9)} 

0 

where, 50 is the Stokes vectors of polarized incident light, MT(ö) the retarder of the 

specimen,  A/(0)   the rotator of the specimen, and  M    „   the Stokes vector which 

shows observing direction. Thus, the intensity of scattered light is expressed as 

/=-MJ{l-sin2(a-95)siu2(V'-0-<?')cos<5-cos2(a-93)cos2(^-0-?5)}   (2) 

here, /   : Intensity of observed scattered light from specimen, 
k  : Light scattering coefficient, 

A1 : Amplitude of monochromatic incident light, 
a : Azimuth of the axis of incident light, 
q>  : Azimuth of the fast axis of the equivalent retarder, 
xp  : Observing direction, 
0   : Characteristic angle of the equivalent rotator, 
ö : Retardation of the equivalent retarder 

In this equation, 8 +q> gives the secondary principal slress direction and ö gives 

secondary principal stress difference. In order to eliminate the other parameters away, 
following combinations of a and xp are chosen. We denote intensities /j under 

conditions of a = a, and i// = y{, and I2 under conditions of a=a2=a,+ 45° and 

ip =xp2=xpl-45°, when selecting the same observation direction. Subtracting /, from 
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Y« 

' ULaser OCylindrical lens 
G:CHan-thompson polarizer I:Immersion fluid bath 
H:Ha!f wave plate S:Specimen 
P:GIan-!hompson polarizer DrDigital camera 

Fig.l Experimental set up 

72 and denoting it 73, we have 

1 73=72-7, =-M2(l + cos<5)cos2(^-^+0) (3) 

In Eq.(3), for another combination of a and xj> ,74 under conditions of a, -tp1 = 0°, 

and /j under conditions of a; -*/>, = 45° are chosen. Then, 0 and <5 are obtained as 

follows. 

(4) 0--Itan-' [L. 
2 [1. 

ö = 2 cos" 
kA2 

(5) 

Again looking at Eq.(2), I6 under condition of a = cr6 and i}> = V6> and ln under 

condition of a7 = a6 +45° and i/>7 ="/,6 +45° are selected in order to separate cp. 

Taking 7g as 

h=Ii-h ~^kA2Q.-cosö){cos2(a6+rJ>6-e-2ip)} (6) 

We can choose another set of combinations as follows. On Eq.(6), denoting 7, and 710 

for the combinations of a and \jj as a6 + rpi = 90° and   a6 +rp6 =180° , respectively. 

We have, 

7. 
■^ = tan2(-0-2<p) 
'9 

Then, 

^ 0-itau^ 
2 h)  4 

1    JIJ9-IJt\ tau^-tan'^-tan,   r    rr 
7, /.]   4      I//,+//, 

(7) 

(8) 

When looking at these calculations, it is necessary to obtain several image data under 
the combinations of a and ip . 

Mo-P5 
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74 => a, = 22.5°,^ = 22.5° & a2 = 67.5°,V2 = -22.5° 

/5 =* 0l = 67.5°,!/;, = 22.5° & a2 = 112.5°,V'2 = -22.5° 

/9 =* a6 = 112.5>6 = -22.5° & a7 = 157.5>7 = 22.5° 

/i0 => as = 67.5°,V»4 = -22.5° & a7 = 112.5°, t//7 = 22.5° 

Using six image data (two image data a overlaped.), the secondary principal stress 
direction is obtained as, 

if '¥9 _ViO :£+q>=—tan1 — +-tan 
2      U     4 Vs +VioJ 

(9) 

3. Experimental Procedures 

3.1 Experimental Setup 

Fig.l shows the experimental setup. A laser beam with small radius is polarized by 
Glan-Thompson polarizer and then the angle of polarization is adjusted by half wave 
plate. The light is polarized by second Glan-Thompson polarizer (angle a) again to 
make very assure the angle of polarization, then expanded to a thin layer of light by a 
cylindrical lens. The beam is inserted into the specimen placed in an imersion bath 
filled by the liquid of same refraction index with the specimen. Scattered light 
photoelastic image is taken into a picture by digital camera. 

3.2 3-D Photoelastic Model 

A 3-D photoelastic sphere model adopted in this study is made of Araldite B-CT200 
epoxy-resin cured with a hardener HT903. After removing residual stresses at high 
temperature and slow cooling process, stress was frozen in the specimen under 
diametrical load of 60N at the top and bottom of specimen as shown in Fig.2. 

3.3 Experimental and Analysis Procedures 

A layer of incident light is inserted both on the meridian plane of the sphere specimen 
and a plane parallel to it as shown Fig.3(a), to investigate symmetrical and more 
general stress distributions. On the equator plane of the model and a plane parallel to it 
as shown Fig.3(b), the distribution of principal stress difference and its direction are 
also investigated. Fringe patterns on these plane are taken in pictures by digital 
camera. Using brightness distribution on four lines as shown Fig.4, the secondary 
principal stress difference and direction are calculated. 
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4. Results and Discussion 

Examples  of scattered  light  image  data  are  shown  in  Fig.4.   In  Fig.5(a)~(d), 
comparison of experimental with theoretical results [3] - [6] of the secondary principal 
stress difference are shown. And the secondary principal stress direction are compared 
in Fig.6(a) ~(d). Let us discuss on the results of   the secondary principal stress 
difference and direction separately. 
1] On the secondary principal stress difference. 
a) Experimental results show fairly good agreement with theoretical ones. However, 

some severe difficulties still remain particularly around the portion of high stress 
concentration. 

Section A 
(symmetrical plane) 

wmmmam 
Section B 

(unsymmetrical plane) 
Section C 

(symmetrical plane) 

m 
Section D 

(unsymmetrical plane) 

(a) a = 22.5*> = 22.5° 

;;^gg^a ^^iliiiteili ill | 

KTTf 
M&M 

a = 225°,if = 225° a = 22.5°,r = 67.5° a=225°,v = \\2S° 

a=22.5°,(/ = 157.5° a = -22 S°,v = -67.5° 

(b) Section B 

Fig.4 Examples of Image data 

a = -22.5°,!/ = -112.5° 
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Fig.5 Secondary principal stress difference 

Mo-P5 
p.7 

(c) Line c(symmetrical plane) (d) Line d(unsymmetrical plane) 

Fig.6 Secondary principal stress direction 
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b)Around regions where the difference of secondary principal stress becomes large, 
considable errors between theoretical and experimental data are observed. This 
comes from the fact that the density of fringe vary rapidly, the resolution of camera is 
not sufficient in this region. So it would be necessary to choose a best fit camera for 
the density of fringe order. 

2]0n the secondary principal stress direction. 

c) The error between experimental and theoretical value of the secondary principal 
stress direction is larger than the case of the secondary principal stress difference, 
because the influence of retardation of the equivalent retarder «5 on the intensity of 
scattered light is larger than the expectation in theory. 

d) Experimental values show some degree of agreement with the theoretical results on 
the symmetrical layer. On the other hand, the experimental results on uusymmetrica! 
layer show poorer agreement with theoretical results and the errors are much larger 
than that on the symmetrical layer. So, it is pointed out that both the azimuth of the 
fast axis of the equivalent reterder and the characteristic angle of the equivalent rotator 
on symmetrical planes is obtained much easier and more accurately than on 
unsymmetrical planes. 

e) Since two solutions of the secondary principal stress direction obtained 
simultaneously in the calculation proposed, choice of proper solution from two is 
another problem in this method. 

Similar level of accuracy on the meridian and the equator plane of sphere model are 
obtained, thus it can be expected that wc will be able to improve the technique to get 
more accurate secondary principal stress distribution on every plane. 

5. Concluding Remarks 
The authors discussed a method for 3-D analysis of the dircctiou and the difference of 
secondary principal stresses with a method based on the scattered light photoclastic 
technique. As an example, a sphere under a pair of diametrical compression is 
analysed. Then, comparing with theoretical results, good agreement was obtained on 
the place where the secondary principal stress difference and dircctiou do not vary so 
much. Thus, effective clues were found for the development of a technique in general 
3-D scattered light photoclastic stress technique. 
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Abstract 

In recent years, phase measuring techniques have been applied to the problem of 
extracting information of photoelastic data. In this work, a complete method for stress 
analysis from photoelastic fringe patterns is presented. 
The photoelastic phase maps are obtained with a circular polariscope. For the isoclinics 
calculation a four-step phase-shift algorithm is used. A white light source is used to 
avoid problems of low modulation in the fringe pattern. Isochromatics are calculated by 
a new algorithm developed by us with almost no influence of the isoclinics. The 
isochromatic parameter can be determined without sign ambiguity. We have also 
developed a method for the error analysis of the measurements produced by the errors 
of the elements of the polariscope. Finally, using the equilibrium equations, we can 
obtain the values of the main stresses in the sample from the isoclinic and isochromatic 
parameters. 

1. Introduction 

Photoelasticity is a well-established technique for stress analysis and has a wide range 
of industrial and research applications [lj. Recently, several methods of analyzing 
photoelastic fringe patterns by means of phase-measuring techniques have been 
presented [2-7]. The main goal of these techniques is the determination of the 
distributions of isoclinics and isochromatics in order to be able to perform an analysis of 
the stress distribution in the sample. To develop a complete, fully automated method of 
stress analysis from photoelastic data several difficulties must be faced. 
First, we must adapt the usual phase-step algorithms to the kind of fringe patterns that 
appear in photoelasticity. The main problem is that the isoclinic and isochromatic fringe 
patterns are completely mixed. The modulation of the isoclinic phase map depends on 
the isochromatics, and vice versa. For that reason, the unwrapping of the corresponding 
phase maps is difficult because of the appearance of logical inconsistencies associated 
with low-modulation areas. The methods for the isoclinic calculation proposed in the 
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literature solve this problem adequately, by using of a white light source, instead of a 
monochromatic one. It is very different with isochromatics. The methods based on 
phase-measuring techniques that exist in the literature present several problems, the 
most important ones being sign ambiguity and dependence on isoclinics. We have 
developed a new algorithm that avoids sign ambiguity and whose performance is almost 
independent of the isoclinics, thus overcoming the inconsistencies associated to low- 
modulation areas produced by them. 
Another point to take into account is the different error sources that influence the phase 
measurement. The error analysis of the phase-shifting algorithms [8,9] must be 
complemented with a specific study of the contributions of the errors associated to the 
polariscope. To quantify the errors produced in the determination of the isoclinics and 
the isochromatics due to this cause we have developed an error analysis method [10]. 
With this method, based on Jones calculus, we are also able to decide in a qualitative 
way the influence of the different errors in the final measurement. 
Finally, we must be able to determine the values of the principal stresses at every point 
in the sample from the values of the isoclinics and isochromatics. This process is called 
stress separation. To perform this separation we must solve the so-called equilibrium 
equations. When we introduce photoelastic data in these equations we obtain a system 
of partial differential equations in which the right-hand side is a set of experimental 
values, which are of course discrete. In this way, the problem of stress separation is 
reduced to a problem of integration of pairs of difference equations. Different numerical 
methods have been applied to solve these kind of equations. We propose the use of a 
multigrid method that is well suited to deal with realistic, noisy sets of data. [11] 
The combination of all these techniques (phase-measurement to determine isoclinics 
and isochromatics, error analysis and multigrid methods to solve the equations for stress 
separation) permit the complete evaluation of the stress state of a plane sample in few 
minutes. 

2. Isoclinics and isochromatics calculation by phase-measuring techniques 

For the isoclinics calculation a circular polariscope is used in the so-called linear bright 
field configuration. The output intensity of the polariscope in this configuration is given 
by 

7 = l--/0sin2-(l-cos4a), (1) 

where 8 and a are the isochromatic and isoclinic parameters respectively. /0 is the input 
intensity. We use a four-step phase-shift algorithm where the steps are introduced by 
rotating the whole polariscope by an angle ß. Then, Eqn. (1) takes the form 

/ = /B+mcos[4(a-ß)] (2) 

where lB is a background term and m is the modulation of the isoclinic fringes. Both IB 

and m depend on the value of the isochromatic parameter and, because of this, of the 
wavelength of the used light source. However, the isoclinic parameter does not depend 
on wavelength. If we take four images with ß,=(M)rc/8, i=l,...,4, the wrapped isoclinic 
phase is calculated by 
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W[4a] = tan"1 

h-h 
(3) 

l3     l\ ) 

where W is the so-called wrapping operator, that denotes modulo lit.. 
Eqn. (3) solves the problem of extracting the isoclinic parameter except in the cases 
where modulation is too low. Since m depends on 8, the low-modulation areas depend 
on wavelength. If a monochromatic light source is used there will be several regions 
where the value of 8 makes m too small. However, this problem can be overcome by 
simply using a white light source, since then the low-modulation areas corresponding to 
a given wavelength will be regions of high modulation for another wavelength. Only in 
the so-called zero-order isochromatic fringes, corresponding to the loci of points of the 
sample for which 8=0, the modulation is very low for every wavelength. 
Once W[4a] is determined in this way, we compute the value of the isochromatic 
parameter that depends on a. 
For isochromatics, as we have said, we present a new algorithm. We start now with a 
general configuration of the circular polariscope. The incident light on the sample is 
circularly polarized. The output intensity in this case is 

J = 1 - sin 2( Y - <p) cos 8 - sin 2(q> - a) cos 2(\|/ - <p) sin 8, (4) 
where a and 8 are again the isoclinic and isochromatic parameters and the angles y and 
cp correspond to the orientation of the second quarter-wave plate and the analyzer of the 
polariscope, respectively. 
We take eight images corresponding to different configurations of the circular 
polariscope, mat appear in Table 1. 

TABLE 1. Configurations of the polariscope 

Configuration Intensity output Configuration Intensity output 

1« ^90045045^^5 
/j = —(1+cos 2a sin 8) 

5. />-4509o090'4o 
ls =—(1+sin 2a sin 8) 

2. />900450-45A45 
I2 = —(1- cos 2a sin 8] 

6. .P.4509oooAgo 
I6 =—(1-sin 2a sin 8) 

3. ^900450-45^0 /3 = 2(1_cos5) 7. P^sQw&Ats 
77=y(l-cos8) 

4. /,9oÖ45Ö45Ao /4=-(l+cos8) 8- ^.4509009oA45 /8 =—(l + cos8) 

Note: The notation used in the configuration is as follows: P stands for (first) polarizer, Q stands for 
quarter-wave plate and A stands for analyzer (second polarizer). The subscript corresponds to the 
orientation (in degrees) of the element with respect to the chosen jr-axis. No reference to the sample (that 
is placed between the two quarter-wave plates) is included. 

From these eight output intensity distributions, the (wrapped) isochromatic phase 8 is 
obtained by 

W[8] = tan -\\(h~h)cos 2ct+(^5_ h )sin 2a I 
1     T[(WS)+(W7)]      J 

(5) 

Mo-P6 
P-3 
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The use of this expression permits to deal with the usual problems of isochromatic 
phase extraction, specifically with the problems arising from the existence of low- 
modulation areas due to isoclinics. From Table 1 we see that I\-I2 is modulated by cos 
2a and Ig-Ig by sin 2a. That means that any algorithm that uses only one of these 
differences, for instance, one based in the following equation: 

W[8] = tan-1{/    
(/l"/2)     i ») [(/4-/3)cos2aj 

would fail in the areas where the value of cos 2a is small, since both numerator and 
denominator would be very small, so there would appear big errors in the phase 
computation. Obviously, the case will be the same with Is-k, but then the low 
modulation areas will be associated to low values of sin 2a. 
We see, then, that the low modulation areas corresponding to the considered differences 
are in quadrature. That means that if we use both differences, as in Eqn. (5), there will 
be no regions where both terms in the numerator are small because of the isoclinic 
parameter. In this way, the modulation of the isochromatic phase map calculated by (5) 
becomes independent of the value of a, so that a complete separation of the information 
of isochromatics and isoclinics is achieved. 
Another advantage of Eqn. (5) is that we work directly with the eight intensity 
distributions that are smooth functions, suitable to any filtering, in a way that the phase 
jumps are not affected by this filtering. This is not possible if we work instead with 
wrapped phases that are discontinuous by definition. 
No sign ambiguity appears in the computation of 5. The algorithm can deal with any 
number of isochromatic fringes in the field of view, as long as the spatial frequency of 
the fringes is below the Nyquist limit of the detector. The zero-order isochromatic fringe 
can be determined by studying the modulation of the isoclinic and isochromatic phase 
maps. 
With this algorithm, both isoclinic and isochromatic wrapped phase maps are good 
enough for the use of any standard unwrapping algorithm. Unwrapping is necessary if 
we are going to perform a stress separation process. 

3. Error analysis of phase-measuring algorithms applied to photoelasticity 

There exists in the literature a considerable amount of papers that deal with the problem 
of error estimation in phase-measuring algorithms. These papers mainly study the effect 
in the phase calculation of errors in the phase steps, nonlinearities in the detector, 
additive noise, etc. When applied to photoelasticity, however, a new error source 
appears for this kind of algorithms, namely the errors associated to the configurations of 
the polariscope used to obtain the different intensity distributions upon which the phase- 
measuring algorithms are based. The theoretical expressions for the intensity 
distributions (e.g., those in Table 1) are valid only for definite orientations of the 
elements of the polariscope. That means that if we have an error in these orientations the 
real output intensity of the polariscope does not coincide with the one that is required to 
obtain the desired phase shifts between intensity distributions, which implies that the 
calculated phase (e.g., by Eqn. 5) will be affected of errors. The analytical expressions 
of these intensity distributions cannot be used as a basis of the analysis of the phase 
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error, since they are true only for the particular configurations of the polariscope for 
which they are calculated. Therefore, the usual method of error propagation cannot be 
directly applied to this case. 
We have developed a different approach to the error analysis in phase-measuring 
algorithms applied to photoelasticity based in Jones calculus. To be able to perform in 
an easy way both qualitative and quantitative error analysis our method uses a linear 
approximation. Instead of using the exact Jones matrices of the error-affected elements, 
we associate to each element the Jones matrix of the error-free element plus a 
perturbation Jones matrix that depends linearly on the error. In this way we can 
calculate the Jones matrix of the whole polariscope, obtaining the Jones matrix of the 
error-free polariscope and a series of contributions of the different error sources. This 
"real" Jones matrix can then be used to obtain the output intensity of the error-affected 
polariscope. 
The Jones matrix will be of the form 

5 

M*=M + ^jEj, (7) 

where M is the "nominal" matrix of the polariscope (that means, the matrix if all the 
elements are free of errors) % are the errors corresponding to each error source and Ej 
are, matrices which can be analytically obtained that correspond to the "perturbations" 
introduced by the errors in the orientation of the elements or the retardation of the 
plates. Then we can use M to calculate the output intensity 

I*={MdfMa, (8) 
where a is the Jones vector of the initial beam. 
We can then use the value of the perturbed intensities f in Eqn. (5) to obtain the errors 
in the isoclinics and the isochromatics. We have developed a procedure of error analysis 
based on the study of the histograms of the distribution of errors for the different values 
of isoclinics and isochromatics. We have checked the performance of the method by 
comparing it with experimental results. 

4. Stress separation 

The determination of the values of the principal stresses at every point in a sample from 
any kind of direct experimental measurements is called stress separation. In 
photoelastic experiments it is not possible to obtain the values of the principal stresses 
in every point of the sample directly. What is obtained is the difference of the principal 
stresses (associated with isochromatics) and their orientations (associated with 
isoclinics). Therefore, some information must be added to photoelastic data to separate 
stresses. The method selected by us is the resolution of the equilibrium equations, which 
are relationships between the spatial variations of the Cartesian components of the 
stresses and the value of the shear stress at every point. The connecting point between 
photoelastic data and the equilibrium equations is shear stress, because it can be directly 
measured by photoelasticity. 
In this way, if a* and oy are the components of the stress at a given point in a fixed 
Cartesian system of reference and a^ is the shear stress, the equilibrium equations, in 
the absence of body forces, are given by 

Mo-P6 
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^ + ^ = 0, (9) 
dx       ay 

^+^- = 0. (10) 
dy       dx 

The components ox and ay are related to the isoclinic and isochromatic parameters by 
(ax-ay) = #8cos2a, (11) 

a„=-K&sm2a, (12) 

where 

K = -^-, (13) 
2ndC 

where X is the wavelength of the light used, d is the thickness of the sample and C is its 
photoelastic constant. 
From these equations we can obtain a relationship between the sum of stresses o=ax+oy 

and the isoclinic and isochromatic parameters: 

dx        dx     dy ' 

dy     dy     dx ' 
where 

0 = /f8cos2a, (15) 
and 

¥ = K8sin2oc (16) 
We must then solve (14), a system of partial differential equations in which the right- 
hand side is a set of experimental values, which are of course discrete. We see that the 
problem of stress separation is reduced to a problem of integration of pairs of difference 
equations, which correspond to the discrete version of equation (14). Many numerical 
methods can be applied for this goal [12]. When dealing with stress separation these 
methods must be capable to work with arbitrarily shaped processing areas and to 
overcome the problems associated with the noise in the data. Noise problems are 
especially significant, since we measure O and *F and then we calculate their partial 
derivatives and mix them, so the noise of the experimental data is amplified. 
We have adopted a multigrid method to perform stress separation. [11] We can see that 
o fulfils Laplace equation, which can be solved by the well-known Gauss-Seidel 
relaxation technique. Gauss-Seidel relaxation provides the high-frequency details of the 
function very fast, but it propagates this information very slowly, so low-frequency 
features of the function are difficult to obtain. For this reason, multigrid methods are 
well suited to improve the efficiency of the Gauss-Seidel relaxation scheme. The key 
idea of the multigrid approach is to transform the low-frequency components of the 
solution obtained by a Gauss-Seidel relaxation into high-frequency components of a 
coarser grid. In a coarser grid, Gauss-Seidel relaxation works very well and we only 
need to translate the results obtained to the finer grids. A set of grids, each with a double 
spacing between points can be used, and the information must be transferred first from 
finer to coarser and then from coarser to finer grids. This is accomplished by the action 
of two operators, prolongation and restriction. The algorithm performance is good 
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5. Experimental results 

To show the performance of our method we have chosen a realistic sample, consisting 
of a plate with a hole and a cut joining the hole with the border (figure 1). A 
compressive force is applied as indicated in figure. In figures 2 and 3 we show the 
distribution of isoclinics and isochromatics respectively. In figure 4 the sum of principal 
stresses calculated by our method is shown. For comparison, we show in figure 5 this 
sum calculated by a method of finite elements. For the sake of clarity contour lines are 
included. In figure 6 profiles of the Oj stress along line AB of figure 1, as calculated by 
our method (line) and the finite elements method (circles), are shown. 

Mo-P6 
P-7 

Figure 1. Schematic representation of the sample 

Figure 2. Isoclinics Figure 3. Isochromatics 
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Figure 4. Sum of principal 
stresses by our method 

»1  o 
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Position (pixel) 
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Figure 5. Sum of principal 
stresses by finite elements 

Figure 6. Profile of the Oi 
stress along line AB, 
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Abstract 

A generalized phase-shifting method was developed for reducing the influence of noise 
caused by the variation in light intensity of a light source and so on, and for automatically 
measuring photoelastic parameters, relative fringe orders and principal-stress directions, 
in the whole field. The fringe orders obtained using the method were used to measure the 
stress intensity factor, and the principal-stress directions to extract the zero points. 
Furthermore the zero points were used to design structural members with holes. The stress 
intensity factor in a beam with a crack on one side subjected to a three-point bending was 
accurately obtained from fringe loops multiplied using a technique for drawing a contour 
map of the fringe order values. The zero points in a T-shaped plate subjected to a 
compressive load were accurately extracted using a technique for judging the zero points, 
and were effective to design the plate with holes. 

1. Introduction 

The photoelastic method is one of the most effective methods for whole-field stress 
analysis. Photoelastic fringe parameters, fringe orders and principal-stress directions, in 
the whole field of a model are required in this analysis. There are many available methods 
for obtaining the fringe parameters[l-10]. Using these methods, the determination of the 
fringe parameters lias been markedly improved. Among these methods, the phase-shifting 
method, which can be used to obtain the fringe parameters from a combination of several 
images taken by the rotation of optical components, is promising for the determination of 
fringe parameters in the whole field. This method has assumed that the time-series light 
intensity at any point obtained by the rotation of optical components lies exactly on a 
sinusoidal curve. Actually the light intensity does not lie exactly on such a curve because 
of noise caused by the variation in the intensity of a light source and by dust on optical 
components. Such noise has an adverse effect on the results obtained by the phase-shifting 
method[l 1]. A method based on Fourier transform[4] has been used to reduce the effect 
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of such noise on the separation of isochromatics and isoclinics from images obtained by 
rotating the crossed polaroids in a plane polariscope. However; fringe orders were not 
obtained by the Fourier transform method. 

In this study, a generalized phase-shifting method was developed for suppressing such 
adverse effects and for automatically measuring photoelastic fringe parameters in the 
whole field, and the parameters were used to measure the stress intensity factors and 
extract the zero points in a structure member. 

2. Generalized Phase-Shifting Method [6,10] 

When the polarizer and analyzer in the dark field and light field are simultaneously 
rotated by 0 from a selected reference, R, the light intensities, /„ /„ at any point emerging 
from the dark-field and light-field plane polariscopes with the monochromatic light source 
are 

ld = I0sm22((ß-e) + IB 

1. = -Lsm22(<p-e) + a2 + 1B 

(1) 
(2) 

where 70=a2sin2 n N, a is the amplitude of polarized light transmitted through the 
polarizer, N is the fringe order, <p is the direction of principal stress, o„ to R, and IB is the 
background light intensity. 

By applying the Fourier-series expansion to the time-series intensity data, I& 
(A=0,l,2,...,n), obtained according to the rotation of the polaroids at every angle, 
A0(=9/n), from 6=0 to 6=7t/2 in a dark-field plane polariscope at each point, 10, IB and 4> 
in eqs(l) and (2) can be calculated as 

where 

ifJT^? 
ao - h2 + b\ 

<t>- - tan 
a. 

(3) 
(4) 

(5) 

n-l 

1 
a0   =   ~   T,Jdm n m-o 

E Jjm 
cosim 

n   m-0 

n-l 2 
n   m-0 

-I .   *, =-E^s,n|m 
2n (6) 

In order to measure N, a must be separated from Ig. By applying the Fourier-series 
expansion to the time-series intensity data, 7Ä (Ar-0,1,2 «), obtained according to the 
rotation of polaroids at every angle, A8(=6/M), from 6=0 to 6=7r/2 in a light-field plane 
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polariscope at each point, a2 is obtained as 

Mo-P7 
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(7) 
n m-0 

Hence the application of a half-angle relation to I0=a sin TIN gives the relative fringe 
orders, N 

(8) 

where O^A^O.5. 

3. Application 

3.1 MEASUREMENT OF STRESS INTENSITY FACTOR 

The fringe orders obtained using the proposed method were used to measure the stress 
intensity factor in a rectangular plate with a crack at one side under 3-point bending as 
shown in Fig.l. This specimen was an epoxy resin plate (Arardite-CY230:Hardener- 
HY956=100:20 in weight ratio) 220 mm long, 50 mm width, 5.8 mm thick, and had a 
photoelastic sensitivity of 0.076 mm/N. It was subjected to a load of 125.4 N, P. The 
distance between supporting points was 200 mm. The crack length was 6.8 mm. 

3.1.1 Measurement of Fringe Order 
The fringe orders were obtained as follows. Figure 2 shows a polariscope system for 
measuring the fringe orders. The polarizer and analyzer were simultaneously rotated using 
the stepper motor driven by the number of pulses transmitted from a personal computer. 

Light source Polarizer 

CCD camera 

Figure 1. Specimen. Figure 2. Computerized polariscope. 
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Images which included both isocliromatics and isoclinics were captured using the CCD 
camera, digitized into 8 bits (256 levels) using the image processor, and stored as a 
256X256 pixel array in a hard disk for each step of the rotation. In this study, the 
polarizer and analyzer were rotated with an interval about 0.7 deg. which was obtained 
by dividing 90 deg into 128 equal angles. As a result, 129 images in the dark and light 
fields were taken between 0 and 90 deg. A mercury lamp in a plane polariscope was used 
for obtaining fringe orders. 

After the 129 images have been taken in each field, the time-series intensity data were 
made at each pixel using these images, and stored in a hard disk. The time-scries intensity 
data were used to obtain fringe order at each pixel using the Fourier-scries expansion. 

Figure 3 shows the isochromatic fringes obtained in a dark-field circular polariscope. 
Figure 4 shows the relative fringe orders, A7, obtained by the proposed method. In this 
figure, the black regions were assigned the value of A;=0, and the white ones A'=0.5. 
The regions changed from black to white as the value of A' increased from 0 to 0.5. 

3.1.2 Drawing of Fringe Loop 
Fringe loops were drawn from an image with relative fringe orders as follows. First, an 
image with fringe orders at all pixels in a model, which was obtained using the 
generalized phase-shifting method, was partitioned into triangles with vertexes a, b, and 
c, which were neighboring pixels. Second, the positions at which a fringe loop of a given 
fringe-order value was passed through on edges ab, be, and co of each triangle were 
calculated on the basis of linear interpolation of fringe-order values A'„, Nb and A'c at 
vertexes a, b, and c. Third, line segments, which were parts of the fringe loop, were drawn 
between the positions. Finally, the fringe loops were drawn by connecting those line 
segments. 

Figure 5 shows the isochromatic fringes, which were extracted at an interval of fringe 
order 0.05 between 0 and 0.5. In this figure, the absolute fringe orders were assigned to 
the extracted fringes. The fringes with integer orders of A'=0, 1, 2. ... and half orders of 
A'=0.5, 1.5, 2.5, ... were not extracted, because the values of A:=0 and 0.5 were seldom 
obtained at the points which were sampled as a 256 X 256 pixel array and digitized into 
256 levels used in this studv. 

m Sf 
C"3> 

«ÄST •****■ 
Figure S. Isocliromatics. Figure 4. Relative fringe orders obtained 

using the proposed method. 
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3.1.3 Calculation of Stress Intensity Factor 
The fringes shown in Fig.5 were used to calculate the stress intensity factor, KJ(ap}, by the 
Irwin method[12]. The theoretical stress intensity factor, Kl(„,yJ, in a rectangular plate with 
a crack at one side under 3-point bending[13]. 

Fringes in the vicinity of the crack tip must be used to calculate K, (av) accurately. 
However, fringes which were located extremely close to the tip were able to be used 
because they were not drawn accurately due to a large deformation near the tip. Hence, 
twenty-four fringes with fringe orders 0.85 (L/R), 0.9 (L/R), 0.95 (L/R), 1.05 (L/R),..., 
1.45 (L/R), where L/R indicated the fringes at the left and right of the crack shown in 
Fig.5, were selected to calculate K!(tip). Table 1 lists examples ofK1(ap) obtained by the 
proposed method. The error in KI(ap) measurement decreased as the fringe order increased. 
The mean errors for four fringes with fringe orders 0.95 (L/R) and 1.05 (L/R) nearest to 
the Ist-order fringes, which were obtained by conventional techniques such as thinning, 
and for the twenty-four fringes were 4.3 % and 2.6 %, respectively. The mean error for 
eighteen fringes with fringe orders 1.05 (L/R), 1.1 (L/R),..., 1.45 (L/R) was 0.9 %. The 
use of multiple fringes near the crack tip improved the accuracy of the measurement of the 
stress intensity factor. 

Mo-P7 
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(a) (b) 
Figure 5. Contour maps of fringe order values drawn at intervals of AA'=0.05. 

Table 1. Comparison between experimental and theoretical stress intensity factors, K^p and A'M 

Fringe used to 
calculate Kirp (MPa • mm   ) 

K,hy    m (MPa • mm    ) 
Error (%)(=100- 

1 Kcv-K,hy i lK,hy) 

0.9(L/R)* 
1.1 (L/R) 
1.2 (L/R) 
1.3 (L/R) 
1.4 (L/R) 

12.7 
11.9 
11.7 
11.7 
11.7 

11.7 

8.5 
1.7 
0 
0 
0 

* L/R indicates the fringes at the left and right of the crack shown in Fig.5. 
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3.2 EXTRACTION OF ZERO POINT 

The principal-stress directions obtained using the proposed method were used to extract 
the zero points in a T-shaped plate subjected to a coinpressive load, P, of 941N, as shown 
in Fig.7. Furthermore, the zero points were used to design structural members with holes. 
This model was made of an epoxy resin plate of 6mm thickness, t, 3.6GPa Young's 
modulus, E, 0.36 Poisson's ratio, rand 0.1mm/N photoclastic sensitivity, a . 

3.2.1 Measurement of Principal-Stress Direction 
The principal-stress directions were obtained using the same technique as that described 
in Section 3.1.1 except for use of a white lamp instead of a mercury lamp. 

Figure 8 is the image with the principal stress directions used for extracting zero points. 
In this figure, the black regions were assigned the value of 0=0°, and the while ones 
| ^|=90°. The regions changed from black to white as the value of | (f>\ increased from 0° 

to 90°. 

3.2.2 Judgement of Zero Point 
The extraction of zero points utilized the distribution of principal-stress directions around 
a zero point which differed from those around a regular point. To extract the positions of 
zero points, a window was moved on an image with the principal-stress directions, and 
the distribution around the center of the window was compared with a standard one at a 
zero point. If the distribution was similar to one of the standard ones, then the center was 
proposed to be a zero point[ 14]. 

Figure 9 shows the zero points superimposed on the isochromatics. The result shows that 
the location of the zero point extracted by the present method approximately agreed with 
that of the zero-order isochromatic. Table 2 lists the positions of the zero points extracted 
using the ll^ll pixel window as well as that determined carefully by the naked eye with 
the aid of a graphic cursor moved on the image. The maximum difference between these 
coordinates was 1 pixel. 
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Figure 7. T-sliaped plate subjected 
to compression load. 

Figure S. Principal-stress directions. Figure 9. Zero points on 
isochromatics. 
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Table 2. CRT coordinates of zero points extracted using a window 
size of 11 xl 1 pixels and by the naked eye. (Unit:pixel) 

Zero ponit no. Position 

1 
2 

127,82      127,83* 
127,111    127,111* 

• By naked eye 

3.2.3 Application of Zero Points to Design of Structural Members 
Holes are frequently made in structural members to decrease the weight of and to pass 
pipes and wires through these members with an external shape which cannot be changed. 
The holes should be made at locations at which the stresses in these members are lower 
than a required value. This is a kind of optimum design. In a plane stress problem, holes 
at positions where the normal stresses are equal, and the shear stress is zero are desirable. 
This point is just the zero point. 

The stress distributions in structural members with different hole diameters at the zero 
and other points were analyzed by the finite-element method. The finite-element models 
had the same shape as that shown in Fig.7 without and with holes and the same material 
properties, E and v, and thickness, /, as the photoelastic one. 

Figure 10 shows the positions of holes in the T-shaped plate. The holes at the zero 
points and the upper side were called Holes A, B and C, respectively. Hole diameters, D, 
of 3,5,10 and 15mm were used for each hole. The fringe orders, N, of the simulated 
isochromatics were obtained by multiplying (oro2) obtained from the analysis and at. 

Figure 11 is the relationship between the hole positions and the fringe orders around the 
holes. The fringe orders around the holes for Holes A and B were approximately constant. 
The maximum fringe order around the hole was in the case of Hole C. The compressive 
and tensile stresses alternated around the hole for Hole C, which were different from those 
in the case of Holes A and B. This implied that the original circular hole became an 
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Figure It. Comparison among fringe orders, N around 
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elliptic one. The T-shaped plate with a hole at the zero point subjected to a compressive 
load was superior to those with holes at the other points. 

The above results showed that the proposed method was effective in designing 
structural members with holes. 

4. Conclusions 

A generalized phase-shifting method was developed for reducing the influence of noise 
caused by the variation in light intensity of a light source and so on, and for automatically 
measuring photoelastic parameters, relative fringe orders and principal-stress directions, 
in the whole field. The fringe orders obtained using the method was used to measure the 
stress intensity factor, and the principal-stress directions to extract the zero points. 
Furthermore the zero points were used to design structural members with holes. The stress 
intensity factor was accurately obtained from fringe loops multiplied using a technique 
for drawing a contour map of the fringe order values. The zero points were accurately 
extracted using a technique for judging the zero points, and were effective to design a 
plate with holes, 
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SOLUTION OF FRACTURE PROBLEMS BY NON-LINEAR PHOTOELASTIC 
METHODS UNDER SIGNIFICANT ELASTIC AND PLASTIC STRAINS 

Abstract 

MARAT AKHMETZYANOV, GALINA ALBAUT, VIKTOR 
BARYSHNIKOV 
Novosibirsk State University of Architecture and Construction 

In this study the problems of fracture mechanics having geometrical and physical non- 
linearity were experimentally investigated by non-linear photoelastic methods. The 
strains changed in the range from -50% till +220% of relative lengthening. Changes in 
geometry and in thickness of the specimens were taken into consideration. Here, non- 
compressible optically active polyurethane rubber was applied. Two schemes of 
polarizative-optical tests were used: 1) through translucence of rubber specimens; 
2) photoelastic coating method for the study of significant plastic strains in metals. 

The main equations of the method evolved to verify experimental data are 
presented in this paper, and some elastic and plastic problems are studied as examples. 
Stress-strain state in rubber plates with cracks was determined, the cracks taking 
ellipse or round forms under deformation. The inclined crack affect upon stress 
concentration coefficients k, and strain coefficients ks at its tip was studied. Applying 
the photoelastic coating method, the behaviour of concentration coefficients k<, and ke 

was investigated in the specimens made of middle steel and having cuts of different 
outlines and in the weldment of mild steel under plastic deformation. Common laws 
were ferreted out with respect to the distribution of stress fields in the prefailure zone 
near cracks, also, the tendency of functions k„ and ke to change under the increasing 
strains for different outlines' specimens made of different sorts of steel was showed up. 

1. Introduction 

Structural design for new rubber-like or composite materials is mathematically 
hampered especially in view of concentrators or cracks. The same kind of thing applies 
to metal structural elements working at the prefailure stage under significant plastic 
strains. Some of the assumptions and hypotheses used in structural design must be 
experimentally tested and verified. The non-linear photoelastic method enables to solve 
similar problems through experiments. 
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2. General Relationships 

When investigating significant plastic strains in rubber specimens, to measure stresses 
the true stress values were taken (5i and 82 as the main components in the specimen's 
plane and 83 being equal to 0 along perpendicular); to measure strains in the 
specimen's plane the extents of lengthening k\ and X2 were exploited while A.3 

evaluated the strains in specimen's thickness. By the study of large plastic strains 
carried out by means of photoelastic coating method the lengthening extents were 
converted into logarithmic strains according to Hencky (s,=ln X,, i= 1,2,3). Below there 
is a set of relations to treat the experimental data for SKU-6 polyurethane specimens: 
(1) non-changeable volume condition; (2) differential equilibrium equation for a plane 
problem; (3) stress-strain connection equation exploiting Bartenev-Khazanovitch's 
elastic potential; (4) the general law of non-linear photoelasticity; (5) the 
corresponding optic-strain relationship. 

X^X^l; (1) 

4ft), 4-3V)__.0.    4^) , dfan)= 0 . 
9x dy '        dx dy 

(2) 

CT, = A(>.; - X2) ;    CT2 = A(k2 - X3) ; (3) 

a = Co\3h0(a1-a2); (4) 

a = CzXih0(Xl-X2); (5) 

when A is elastic constant, cr - optical path difference, C0 and Cs - stress and strain 
optical constants, h0 - initial thickness [1]. 

Simple equations (3) are not universal, they approximate elastic properties of 
polyurethane SKU-6 quite well. Other kinds of rubber are advantageously 
characterised by relations (6) comprising 4 constants resulted from Moonley-Rivlin's 
theory of strains and the corresponding optic-strain relationship (7). 

a, = 2(A2 + B2\\%-\ -X\y 4(A4 + BJ?2Jfc - X4
3); 

a2 = 2(A2 + V2X2$k\ - X\y 4(A4 + B4xfy\ ~ A); 
(6) 

a = Ceh0A,3 £(A2 + B2\\)ft - X2
2y 4(A4 + B4X4$\ - X4

2)). (7) 
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In this paper, the separation of stresses and strains is fulfilled by means of the method 
of numerical integration of equilibrium equations (2), with the subsequent use of the 
rest of the relations in the set (1)-K5) [2]. 

There have been worked out some other separation methods: measuring cross strain 
method, method of coating cutting, tilted translucence method, etc. 

3. Stress-Strain State in Tensioned Rubber Plate With Crack 

The investigation results of axial and biaxial tension of 3 polyurethane plates of 
different thickness (the upper specimen is of 3 mm thickness and the others are 
1,2 mm thick) and having cracks that took the ellipse or round shapes under tension 
are presented in fig. 1. One of the plates has several round holes at the tip of the crack 
and corresponds to the theoretical model. For all the specimens the fringe patterns 
were obtained, isoclinic fields were plotted and the complete separation of stresses and 
strains was fulfilled owing to the method of numerical integration of equilibrium 
equations (2) with due regard to thickness changes. For some vertical sections the 
stress sheets CTX, ay were plotted, biaxial tension was characterised by o^-vo epures. 
When studying these curves, one should notice that the maximum ay is marked not at 
the tip of the crack but inside a specimen, also, certain laws concerning stress 
distribution ax and ax-<jn under axial and biaxial tension respectively are brought 
about there: the curves are waved and reverse the sign along the vertical axis, thus, the 
sum of projections of all forces on the x-axis is self-equilibrium. 

Experimental data on how the inclined crack affects kCT and ke are presented for 
4 initial slope values: 0°, 30°, 45°, 60° (fig.2). Fig.2 includes a loading scheme, fringe 
patterns, diagrams of changing slopes of ellipses axes as cracks take ellipse forms, 
diagrams demonstrating the behaviour of ka and ks by increasing strains. Here, it 
should be mentioned that initial tips of the inclined cracks (points A in fringe patterns) 
do not coincide with the ellipses' tips, besides, the coefficients of stress and strain 
concentration decrease while increasing the nominal strains. All curves tend to some 
asymptotic values, for instance, the curve k0 has the asymptote 2 when a0=0. 

4. Determination of Stress Concentration in Steel Specimens Under Plastic Strain 
by Photoelastic Coating Method 

Tests were carried out for 3 middle steel stripes having cuts of different forms: circular 
one, V-form and U-form (fig.3). Besides, the mild steel stripe with the weldment was 
exposed to tension (fig. 4). Photoelastic coating presenting the combination of epoxy 
glue and polyurethane rubber covered the specimens at both sides. Fig.3, 4 represent 
the specimens' schemes, the fringe patterns in coating at several stages of loading, the 
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tension diagrams for the steel samples used and the graphs illustrating the behaviour of 
k0 and kE depending on the nominal value of logarithmic strains. 

Studying the graphs k0 and kF_ for the specimens of different kinds of steel having 
the expressed yielding sections, one can ascertain general laws for the both graphs. 
When passing through the yielding section, all the graphs k0 have the abrupt local 
minimum and those of kE have the local maximum. Further, these graphs become 
quieter, but from the point of view of increase-decrease their behaviour can be regarded 
as   reverse   and   satisfying   H. Neuber's   relationship   k = y]kc -k, ,   when   k   is 

concentration coefficient under insignificant strains. Judging by fig.4, this relationship 
is satisfied onlv for 3% strains. 

Conclusion 

In this investigation, the methods of experimental stress-strain determination in 
prefailure zone are exploited, these are non-linear photoelastic methods. The 
experiments made revealed the facts that stresses were characterised as finite and 
defined, thus, they verified the theoretical crack model of Barenblutt-Khristianovitch. 
Also, some general rules are noted for stress distribution near cracks. 

The reliable method of determination of stress and strain concentration coefficients 
is offered and approved for non-linear problems under finite strains. Then, the paper 
proves that under significant strains the coefficients k^ and ke are the functions of the 
strain state. The experiments bring about the fact that Neuber's relationship 
considering k, k„ and IQ is valid for steel, but it doesn't work for rubber-like materials. 
Also, the tendency of smooth stress concentration coefficients to decrease at the cracks' 
tips, when strains increase both under great elastic and plastic strains, is observed. 
Investigations were sponsored by the Russian Fund of Fundamental Investigations 
(project No. 98-01-00302). 
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Scheme of specimen Inclination angle a  change under strains 
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Abstract 

A stress-optic law for dynamic orthotropic photoelasticity is developed from the 
static stress-optic law. Based on this law, the general dynamic photoelasticity has been 
successfully reformed for application to orthotropic composite material in this paper. 
Dynamic photoelastic stress analysis has been performed for an orthotropic plate with a 
hole, which is subjected to compressive impact with the direction of perpendicular and 
parallel to the reinforcement direction. Under the dynamic process the stress wave 
propagation is investigated from these orthotropic birefringent patterns recorded by a 
Cranz-Schardin type multiple sparks camera. 

1. Introduction 

Recently photoelasticity has been successfully formulated for application to 
orthotropic composite materials by several authors. They paid more attentions to 
develop the stress-optic law for the birefringent fiber-reinforced composite materials. 
Sampson (1970) proposed a stress-optic relation that is combined the components of the 
birefringence for plane-stress problems by using a Mohr circle. Dally and Prabhakaran 
(1971), using a micromechanical approach, developed a uniaxial stress-optic law based 
on simple stress-strain models. The biaxial-stress-optic law was verified experimentally 
by employing strain-gage rosettes on a unidirectionally reinforced circular disk under 
diameter compression (Prabhakaran, 1975). Along the other line, Pipes and Rose (1974) 
obtained a strain-optic law for a certain class of birefringent composites. Later, 
Prabhakaran (1975) derived a general strain-optic law for orthotropic model materials 
from the concept of Mohr circle of birefringence. Although these laws have successfully 
applied to some plane stress problems of orthotropic composite materials, there are still 
some differences between experimental and theoretical results due to the influences of 
residual stresses. Knight and Pih (1976) firstly gave the general treatment of anisotropic 
photoelasticity to include the effects of an arbitrary residual birefringence. Hahn and 
Morris (1978), Hyer and Liu (1984) further provided a more perfect stress-optic 
relation. 

In this paper, a general dynamic photoelasticity is reformed to study stress wave 



propagation in orthotropic birefringent materials. The development of stress-optic law is 
derived from the static Hyer and Liu law. The model materials are glass-fiber-reinforced 
materials with the glass fibers in only one direction, rendered transparent by carefully 
matching the refractive indices of the fibers and the matrix. Dynamic photoelastic stress 
analysis has been performed for an orthotropic plate with a hole, the specimen is 
contained 5% reinforcement by volume, and subjected separately to compressive impact 
with the perpendicular and parallel directions to the reinforcement direction. According 
to the stress-optic law for dynamic orthotropic birefringent materials, the stress wave 
propagation is investigated and calculated from these photoelastic patterns. 

2. Stress-optic Law for Dynamic Case 

For static situation, stress-optic law included the effects of residual birefringence is 
derived by Hyer and Liu, and has been accepted extensively. This law is suitable to 
investigate many plane-stress problems in the fields of orthotropic solid mechanics. 
According to the developmental process of general dynamic stress-optic law, we 
propose a dynamic stress-optic law for orthotropic composite materials based on the 
Hyer and Liu law. So, we give the stress-optic relation on the x, y coordinate system in 
the form 

NT = 
O*. CTv Txv 
^L-^- + -^+NRcos26R 

\2 

C2     C3 
2|ü'-ü> 

C, 
+ -^|+NRsin25R 

)X 

where 

'cos2 9    sin2 9 

'c, 

1/ - 

1    1 
+ — sin 29 

= d 

V f i     ' 2 ) 

d(cos29-sin28) 

f„ 

'C« 

fcos2e    sin2 9^ 

.   U    ~    f,    J 

dsin9cos9 
- 

NT is the total instantaneous fringe order of the orthotropic model, NR and 5R separately 
indicate the fringe order and the isoclinic angle of residual birefringence, f„ f2 and f,2 

are three principal dynamic material-fringe values, d is model thickness, 6 is the angle 
between the fiber orientation and x-axis. NR and 5R can be directly measured from the 
specimen under traction-free state. Direct measurements of the stress-optic coefficients 
and mechanical material properties in the Jaw are achieved through tests of impact 
compressive specimens with fiber orientation parallel (0-degree), perpendicular (90- 
degree) and at 45° degree to the direction of the applied uniaxial stress. 

Combining the tests of dynamic photoelasticiry and electrical-resistance strain 
gages about the same specimen, the validity of proposed dynamic stress-optic law of 
orthotropic birefringent materials can be examined. Now, the uniaxial and biaxial 
specimens of orthotropic birefringent materials under impact compression have 
performed respectively along 0-degree, 90-degree and 45-degree orientations, and we 
get quite similar experimental results about these two kinds of methods. 
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3. Experimental Work 

Transparent, unidirectional glass fiber/epoxy resin composite with about 5-volume- 
percentage glass, is prepared by carefully matching the refractive indices of the fibers 
and the matrix, and utilized for model. The experimental system is a general 
transmission arrangement of Cranz-Schardin type. The orthotropic plate 4.Smm in thick 
with a hole is loaded in impact compression with the loading direction parallel and 
perpendicular to the reinforcement direction. During the dynamic process orthotropic 
birefringent patterns are recorded by a Cranz-Schardin type multiple sparks camera, as 
shown in Fig. 1 and Fig. 2. Based on the stress-optic law for dynamic orthotropic 
birefringent materials, the stress wave propagation can be represented by these 
photoelastic patterns. 

At: 
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Fig. 1 A scries isocliromntic-fringc patterns about 0-degree specimen under impact load 
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Fig. 2 A scries isochromatic-fringe patterns about 90-dcgrcc specimen under impact load 

4. Results and Discussion 

The dynamic photoelastic constants and other dynamic material coefficients of the 
anisotropic model are measured by presented in Section 2, as shown in table 1. 

TABLE 1. Dynamic material coefficients 

E, 
(GPa) (GPa) 

Gi!            v,,        v,j                 f,                          f": 
(GPa)                                  (KN/m fringe)     (KN/m fringe) (KN/mfringe) 

7.66 4.27 1.60         0.36     0.20            49.18                  36.71 36.71 

From these isochromatic-fringe patterns in Fig. 1 and Fig. 2, we can notice that 
the residual birefringent fringes are unavoidable for the orthotropic material, and the 
residual stresses are tensile stress along the reinforcement direction. By comparison 
with the dynamic isochromatic patterns of an isotropic specimen subjected to the same 
impact load (as shown in Fig. 3). it is obvious that the transient orthtropic fringes 
depends on the propagation direction of stress wave. 

The reflection and propagation of stress wave around the circle hole can be clearly 
illustrated by these patterns. Furthermore, the transient stress distribution can be 
obtained from the stress-optic law by using material coefficients in table 1. The results 
indicate that for these three specimens the tensile stresses of tlie circle hole edge along 



the diameter are very similar, but the compressive stresses on the both sides around the 
hole for 0-degree specimen are bigger than the other two specimens. Therefore, the 
dynamic orthotropic photoclasticity is a convenient method to study the dynamic 
response in orthotropic materials. 
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1. Introduction 

Methods for elastic stress/strain analysis are broadly classified into the well known 
three categories, namely theoretical, experimental and computational analyses. 
Although some merits and demerits surely exist in all cases, there still exist some 
difficulties for each method in the categories to accomplish analysis by itself in closed 
form involving error estimation under general mechanical conditions. The authors 
have investigated for long time on a new hybrid method which reconstitutes together 
not only basic concepts but also various techniques involved in the three categories, in 
order to improve the accuracy and preciseness of 2-D and 3-D elastic stress/strain 
analysis. The fundamental concepts of the method have been already proposed in the 
previous paper [1]. In this paper, the authors discuss a method for the determination 
of unknown coefficients involved in the discretized representative function of analytical 

solution in Somigliana type. 

2. Formal Solution of Displacement 

2.1. STRUCTURAL EQUATION OF DISPLACEMENT 

It is well known that there are several types of formulation for the structural equation of 
elastic stress/strain analysis. In this paper, for convenience, the authors adopt the 
Navier equation in a closed bounded domain G ER" (n = 2or3) having the 
piecewisely smooth boundary dG . The equation about displacement u is expressed 

as; 

*M(;C) = //AM(.X) +(A+ ju)graddivH(x) = -/(*) (xEG) (2.1) 

where A and \x are Lame's constants, f(x) is body force on G. 



2.2. DISTRIBUTION EXPRESSION OF DISPLACEMENT 

Let T(x) be an elementary solution of Eq. (2.1).    One of the distribution solutions of Eq. 

(2.1) is expressed as; 

u(x) = - J r(* - y)Qu(y)dy + M T(x - y) 
du(y)    \dr(x-y) 

du dn 
u(y)\ds (2.2) 

where, in case of n = 2, 

r« = dxt   dx, t)x1   dx. 

Or     Or 

Ox,   d x, 
/? +■ 

dr     dr &ru(l-v) 

3 x2   3 x, 

where    r a -y/x' + x' ,    7?v a (3- 4v)log- 

and in case of« = 3, 

r(x) 
l 

16VT"(1- v)r 

/ 
(3-4v) + 

dr 

Vox, 
Or     or 

dr     dr 

Ox,    dx, 

where r = i/.' 
2 2 2 

*.    + *2   + *3 

_ö_r_ _ör_ 

ax,    Ox, 

(3-4v) + 

2 

dr 

dx. 

Or    _0r_ 

Ox,    0 x, 

Or Or 

Ox, Ox, 

Or Or 

Ox, d x, 

(3-4v) + 

3. Equivalent Transformation of Boundary Condition 

Unknown function u(y) on   dG   in Eq. (2.2) has to be determined as to fit with 

boundary conditions. 

3.1. PROBLEMS IN BOUNDARY CONDITIONS 



Boundary condition is usually expressed with Dirichret, Nucmann, Robin condition or 
their combination. Furthermore, since the original domain deforms under load, Euler 
or Lagrangian coordinate system has to be selected in order to discriminate the state 
before and after deformation, in a strict sense. However, since the shape of boundary 
after deformation and transformation formulae from one state to another is not known 
in advance, a certain consideration is necessary to handle boundary conditions. 

3.2. UTILIZATION OF EXPERIMENTAL DATA 

In order to avoid the difficulties mentioned above, the authors have proposed to utilize 
reliable experimental data in actual situation. Here, we pay attention to some data of 

firinge order of isochromatics in photoelasticity. 

3.3. THEOREM OF RELATIVE FRINGE ORDER 

The determination of fringe order of isochromatics is somewhat delicate in general. 
When we look at two different fringes, however, the difference of orders between them 
could be found easily, then the concept of relative fringe order comes up. 

Let a domain D be a part of an isochromatics image pattern.    Retardation <5 is 

connected with principal stress difference as 
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2ne 

A 
(3.1) 

where A is the wave length of incident light, c: photoclastic constant and d: specimen 
thickness. The brightness intensity of isochromatics in the dark field, /, is expressed 
as; 

I = a  sin   — 
V2 

(3.2) 

c)v     y 

Figure 1.    Schematic diagram of explanation for relative fringe order 



Here, let us call a point at which ö = mn (w: integer) as a fringe point. In Fig.l, 
curves C; except a curve [?,?u...,?n] and boundary lines show isochromatics 
schematically. On point PGD, we denote the values of/ and ö as I(P) and ö(P), 

respectively. Taking another fringe point Q ££>, let us consider a continuous curve 

C CD which is connecting points P and Q\ 

C:t-*C(t)GD    (Os(sl),    C(0) = P and C(l) = Q (3.3) 

The point P is called as a regular point, when the following two conditions are satisfied. 
1) (5 varies from P to Q on curve C monotonically, and 2) between P and Q, there exist 
at least one fringe point excluding themselves. Then, the point Q and the curve C are 

named as a fringe point and a curve subordinating to the regular point P. 

Let P be the regular point and Q the subordinating point. A point array {PAJVI 

is called as a fringe point resolution of the regular point P, when we can recognize the 
following facts such as; i) Pt=C(tt) (0 = f„ <*,••■< f„ = 1), (1 * k s n -1) is all 

fringe points, and ii) there is no fringe point in an open interval (',_,.O- *u ,ms 

context, the following relation is obtained; 

-|(5(F)-(5(ß)! = -(/.-l)^ + a 
2 2 

(3.4) 

where 

Sin" nr)-i(rt) 
nrj-no 

(3.5) 

When P lies on a fringe poiut, the value of a comes to nil. VVc call here the right 
hand side in Eq. (3.4) the relative fringe order. Relative fringe order is equivalent to 
boundary condition within the domain governed by corresponding structural equation, 
namely an equivalent transformation of boundary condition. Thus, wc can treat 
hereafter the relative fringe order as an alternative of boundary condition. 

4. Discretization of Representative Function in Terms of Stress Components 

4.1. THE FORM OF REPRESENTATION OF STRESS COMPONENTS 

From Eq. (2.2) and the stress-displacement relation, we have; 



ai.(x) = laDj.(y,xt(y)dsy (xGG) (4.1) 

where t,{y) is an unknown function on  3 G and a vector Ay is expressed as follows; 

£>.. =[D,..,JD2T for/. = 2 
'    L   "     ?';J (4.2) 

D^lD^D^Dj    for« = 3 

and 

A* = —1—-4[(1 - 2v){<5hr, + *,r, - <V,} + /?r.r rj        (4.3) 
4o7r(l - v)   r 

foTit=2,    k=l,2;    cc=l;    ß=2 
for«=3,    k=l,2,3;    a=2;    ß=3 

Also, the function £ is called a density function. Attention should be paid to the 
following items. That is, (1) the integration in Eq. (4.1) is defined on every point in 
the original domain G, and (2) the integration in Eq. (4.1) involves the first kind 
discontinuity at x0 E.dG where £(*„) * 0, and is continuous on any other points. 
Namely, we can denote as; 

&..(*,)-äv(*0)-2*£(*a) (4.4-1) 

a*(*o)--{5*(je.) + 5V (*■>)}    (finitely determined) (4.4-2) 

where ö..(x0) = limä.(.r) in G,    <7 .(•*„) = lima(.(jc) in R" -G. 

4.2. DISCRETIZATION 

Utilizing photoelastic data, we can reconstruct the deformed boundary shape of 
specimen under load. Now, let us confine our discussion into the case of 2-dimension 
for convenience, hereafter. In a domain, dG = {(^(f), y2(

f)):' £=[0> ^J}> let us Put 

as; 

c« = (4.5) 
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Then, the unknown function t(x) is approximated by use of spline function as follows; 



C(y(0) 
.-1 

,    y(l)EdG,    Supp( tf, (')) = [',.'.-.4 J (4-6) 

Here, we have an approximation of Eq. (4.1) as; 

^)-tw"{tD^m'x)Nl(t)8ldt} 

+ 2WS" D^y(t),x)Nl{')8ldt} 
j-t 

where 

(/ = l,2,---,m) 

(4.7) 

(4.8) 

*-*>-ii*M3 (4.9) 

5. Formulation of Density Function Determination Problem into mathematical 
Programming 

5.1. SAMPLE POINT EXTRACTION BASED ON EQUIVALENT BOUNDARY 
CONDITION 

To determine unknown coefficient t/; in Eq. (4.7), we select several fringes of which 
relative fringe order are known, and extract sample points on them appropriately as 
same as the number of unknown coefficient. 

Now, recalling the relation between principal stresses and other stress components, 
we can obtain the following expression from Eq. (4.7), 



2n     2»i 

(5.1) 

When putting, 

F»<*> " 2 2 ^u^V-W - V« <*>>&.,(*) -^(*)} + 4^12(^12(.v)],  (5.2) 
t-i i-i 

we can evaluate the fallowings. 

F(v>7.)sF(g.)-(v2„>1+z.)2 (5.3) 

^)'i[4)-k,^Jl' (5.4) 

5.2. MATHEMATICAL PROGRAMMING FOR DETERMINATION OF DENSITY 
FUNCTION 

The problem of determination of unknown coefficient vt as that relative fringe order on 
sample points calculated by Eq. (5.2) fits to experimental data, is formulated into the 
following optimization problem as; 

n//(u) 
s.t.   vER 

mi 
2m+l (5.5) 
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6. Solution for Problems of Nonlinear Mathematical Programming 

6.1. PROBLEMS IN NONLINEAR MATHEMATICAL PROGRAMMING 

Since Eq. (5.5) is a type of nonlinear mathematical programming problems of degree 
four, local solution could be found by usual techniques such as Newton method or 
steepest decent method. However, there exist severe difficulties as follows [2]. 

1) Selection of Initial Value for Global Optimum Solution 
Eq. (5.4) has, in general, multiple local optimum solutions.   The solution obtained by 



starting from an arbitrary initial value is one of those local solutions. To find a global 
or true optimum solution, a suitable initial value has to be selected adequately. 

However, it is usually difficult to be attained. 

2) Speed of Convergence 
In cases that an optimum solution exists at the top/bottom of locally convex/concave 
surface, a step-by-step solution along the surface converges rapidly.    However, since 
there often exist some ill points in a domain related to nonlinear optimization problem, 
the behavior of function value in the neighborhood of a local solution is so complicated 
that the value and the speed of convergence in step-by-stcp procedure are not known in 

advance. 

6.2. IMPROVEMENT OF PROCEDURE TO SOLUTION 

In order to overcome the difficulties and improve the solution, the authors developed a 

method of "Depth-First Homotopy." 

1) Homotopy Method 
Taking ,u-smooth functions   Ft(v)    (k = l,2,---,u), we consider a u-dimensioual 
vector function   F(v) of which components are given by  Fk(v).    Homotopy method 
is explain  as follows. To solve the  u-dimensional  nonlinear equation   F(v) = 0, 

settling an arbitrary point  ~ü   in the domain, the following equation in a domain 

(Ar,/)G7?"x[0,lJ, 

A(i/,0= F(v) + (f-l)F(u) = 0 (6.1) 

is translated into the following equation, by use of the implicit function theorem. 

du. 

dt 
dv^ 

dt 

dvv 

. dt 

= -w (y = v when t = 0) (6.2) 

Taking the Jacobian as follows; 



JF(v) 

HL 
dvl 

OF 

dv, 

ML 
dv. 

dF 

dv. 

HL 
dv 

<>Fu 

dv 
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Iu the numerical solutions of Eq. (6.2), the solution for t = 1 is one of solutions we look 

for. 

2) Depth -First Optimization 
For a real value function <P(v) with ^-variables defined in a domain  DCR", the 

following algorithm is called as "Depth-First Optimization." 

[1] Let us take as E=D. 
i)    Divide E into m-pieces of subdomain, £;,...., Em, with a certain procedure, 
ii)   From each subdomain, extract a sample point Ph ..., Pm. 
iii) On each sample point, find the minimum value of 4>(u). Here let us denote 

the point of minimum <P{v) as Pk and the subdomain as £*. 
[2] Repeat the above procedure, considering the subdomain Et as a new domain E. 
[3] Taking a certain stopping rule into account, [1] and [2] procedures are repeated. 

3) Depth-First Homotopy Method 
For the variables involved in Eq.(5.4), the variable vJma holds different characteristics 
from other variables. Taking the fact into account, we construct an algorithm called 
"Depth -First Homotopy Method." To apply the Homotopy method to experimental 
data, a point Xo in Eq.(6.1) is selected arbitrarily and the initial value of a is settled as 
zero, namely a = 0. 

[1]      For a given initial integer L, let us search the variable Vh within a finite closed 

interval of [a - 9 x 10\ a + 9x10']. 

Substituting the values  cr - 9 x 10\ a - 8 x lO*, • ••, a + 8 x 10\ [2] 

P] 

[4] 

[5) 

a + 9 x 101 into V^, other variables remained are solved by Homotopy method. 

When the point at which the error H{v) in Eq.(5.4) comes to minimum is 
obtained as  a + k x \QL, we denote the solution by Homotopy method as v . 
Then, after decreasing the value of L by 1 and setting new values of a and   v 

as to be  a + k x 10' and  v , repeat the procedures from [1] to [3]. 
According to a certain stopping rule, the same procedure is repeated within a 
designated times. 

4) Discussion from Viewpoint of Mechanical Engineering 



The solution obtained by the method of Depth -First Homotopy proposed in this paper is 
a local solution approved within a certain accuracy. On the other hand, since the 
variable V^ corresponds to the value of principal stress difference in the domain under 
consideration, it is expected that the value would not oscillate so steeply. Taking these 
into account, the solution obtained by the method proposed could be expected to be very 

close to the true optimum solution. 

7. Example Application 

Now, let us apply the method and algorithm to a photoelastic data in contact problem. 
The experimental conditions and the results obtained are shown as follows. 

1) Experimental conditions 
Fig.2 shows a schematic diagram of a rectangular plate specimen loaded by a 
concentrated contact force of 50 kN at the top surface. The bottom of the specimen is 
rested on a rigid bed. Dot marks on the boundary curve show the selected knots for 

the construction of basic spline function JV;(t) in Eq.(4.6). Two isochromatics arc 
selected for sample points of relative fringe order. 

'/A 

-• • • ►V. j .-^  gSX^ jV. »-»-■^ 

^ 

s 

knot 
m = 56 RFO = 0 

Figure 2.    Schematic diagram of specimen and sample data selected. 



2) Results obtained 
Fig.3 shows the whole field distribution of photoelastic fringe obtained by the method 
proposed. Particularly around the contact point, fringes are successfully reconstructed. 
Not only aorund the contact region but on the free boundary and the bottom region, we 
can see fairly good reconstruction of fringe distribution in comparison with the original 
experimental data. 
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Figure 3.    The whole field fringe pattern reconstructed by the method proposed. 

8. Concluding Remarks 

In this paper, the authors discussed on the determination of unknown coefficients 
involved in a representative function taking an example of the formulation of Navier 
equation. The method mentioned here is available if the distribution (hyperfunction) 
solution of displacement in linear elasticity is obtainable. Even in cases that it is 
difficult to obtain some formal solution, if a certain basic function that has similar 
characteristics with structural equations under consideration such as multi-harmonic 
nature, the procedures proposed will be applicable except the techniques in Chapter 2 
and 4. Furthermore, the method mentioned is a part in the series of Hybrid Method 
for Stress Analysis that can include error estimation. From the viewpoint of the global 
system of the hybrid method, it is important to develop and complete the techniques and 
to increase examples of application. 
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HYBRIDIZING OPTICAL METHODS WITH ANALYTICAL AND 
COMPUTATIONAL TECHNIQUES FOR STRESS ANALYSIS 

R. E. ROWLANDS 
Mechanical Engineering 
University of Wisconsin 
Madison, WI53706 USA 

1. Abstract 

Contemporary needs involve effective, accurate and expedient nondestructive methods of 
stress analysis. Individual experimental, numerical or theoretical techniques are often less 
than ideal. Shortcomings of specific approaches include difficulties in obtaining stresses 
theoretically in finite shapes or for other than isotropic material, reliable numerical re- 
sults when loading or geometry are not adequately known, and dependable measured data 
at geometric discontinuities where most serious stresses frequently occur. The typical 
need for many small elements when evaluating stress concentrations by conventional 
FEM increases computer storage demands and run times. This paper demonstrates syner- 
gizing experimental and numerical methods with theoretical concepts to stress analyze 
components fabricated from isotropic or orthotropic composite materials. Although 
thermoelastic data are emphasized, applications to moire\ isochromatics, isopachics, 
holography and finite elements are discussed. 

2.   Analytical Background 

The classical analytical method of stress analyzing a component such as that in the lower 
portion of Figure 1 typically involves satisfying equilibrium and compatibility, subject 
to the boundary conditions. In terms of the Airy Stress Function F, for orthotropy one 
obtains the following compatibility equation [1]: 

34F    „       d4F     ,„ v   d
4F d4F d4F 

a22^-2a26ä^+(2ai2+a«)ä?^-2^ä^+ailä7=a     (1) 

where a{j are compliances. The plane problem of classical elastic theory is now reduced 
to determining F throughout the component such that Equation (1) and the boundary 
conditions are satisfied. Considering F must be a real function of variables x and y, it 
can be expressed as follows: 



T( A ^ plane 

|Z=co(Q 

z (physical) plane 

component        ,. 

Fig. 1: Loaded component. 

• In the case of different complex roots p., and \i2 '■ 

F = 2Re[F1(z1)+F2(z2)] 

• In the case of pairwise equal complex roots \ix and |i2 : 

F = 2Re[fj(z1) + z1F,(zl)], 

(2) 

(3) 

where Zj=x + |X;y, \ij are complex material properties whose values are obtained from 
the characteristic equation associated with Equation (1), and j = 1,2. For isotropy, 
Z\ = z = x + iy, zj = z. One can sometimes construct a representative stress function for 
a specific problem. On the other hand, many plane problems of elasticity can be solved 
by representing the stress function in terms of a truncated series, satisfying boundary 
conditions along only the edge adjacent to the region of interest, and combining the 
resulting equations with measured data. 

For isotropy, Eu = E22 = E, vI2 = v21 = v, G = £72(1 + v), an =a22 = ME, an = 
-v / E, a66=l/G, ax6 = a26 = 0, u.[ = |i2 = i and the individual stresses can be written 
in terms of two analytical functions, i.e. [1, 2], 

üx=-Rt{2^(z)-[W'{z) + Y(z)^ 

oy = Re{2f (z) + [zf (z) + V'(Z)]} 

x;ty = Im[zf'(z) + v(/'(z)] 

(4) 

where the stress function of Equation (1) is 



F = Re[liy(z)dz + mz)\, 

V(0 = %'(z) and primes denote differentiation. The compatibility relationship of 
Equation (1) becomes 

V*F = V2(cx+oy) = V2(S) = 0. 

(5) 

(6) 

Stresses of Equation (4) satisfy equilibrium and associated strains satisfy compatibility. 
One can therefore solve plane problems analytically by ensuring that the stresses as- 
sociated with the stress functions $ and y satisfy the boundary conditions. However, 
analytic solutions are generally only possible for problems having simple geometries. 
As an aid in analyzing plane problems having complicated shapes, conformal mapping 
techniques can be used to transform the complicated geometry of the physical plane into 
a simpler shape in a different plane, Figure 1. Moreover, at least for a region adjacent to 
a traction-free boundary, the individual stress functions <|> and \|/ can be related to each 
other through the concept of analytic continuation. 

Assume the function 

z = flXC) (7) 

maps the region R, of the £(= £ + frtf -plane into region Rz of the physical z -plane, 
Figure 1. Stress functions <)>(z) = tfaXQ] = $(0 and y(z) - w[a>(0] B yQ of 
Equations (4) and (5) are analytic functions of £. Analyticity of the mapping function 
Q)(0 guarantees that equilibrium and compatibility equations are satisfied inside region 
Rz. For isotropy, combining Equations (4) through (7) gives 

cx =Re{2 4>'(P 
<o'(0 

co(0 
no  co"(Q 

K<cr  «'to3 <f'(0 + ¥'(C) 

©'(0 
©CO (no 

co'(C)2 
o"(P ^ 
©w*(0 

©'(0 
(8) 

T   =Im{co(Q no  <Q"Q ,,,,; 
.ffl'(Oa   «'CO3*® 

1U) 
®'(0 

For orthotropy, expressions for the stresses corresponding to Equations (8) can be 
written as 

0r=2RekÄ>+^Ä) 

av =2 Re *'(Ci) , *'&) 
<">!&>    ©2(C2) 

(9) 

Tu-L9 
p.3 



X    -_2Rdu  *^l>+u   ¥M\ «* T    - -2 Ke^ Hi + n2 J. (9) 
coi(^)        co2(C,2)J 

where 

(10) *(Z|) = ^^ = *[w1(Ci)] = *(C,)and'F(Z2) = ^)=='F[a,2(?2)]E4'(C2). 
"^i az2 

The functions 0(z,) and *F(z2) are analytic in the complex z, - and z2 -planes, respec- 
tively, where z{ = x + \ity and z2 = x + \i2y. Substituting Zj=x + \i}y into Equation (7) 
yields the following induced mapping function in terms of £ •(= E, + (IT)): 

Z;=ö>;K,-). 7 = 1.2. (11) 

Stress functions <3> and Y are now analytic functions of ^ and £2, respectively. 

The classical stress analysis boundary-value problem entails satisfying equilibrium and 
compatibility throughout the entire engineering component (say bottom portion of 
Figure 1), subject to the boundary conditions. However, one can collect measured 
information in only the region of interest, say Rz of Figure 1, and then using relevant 
analytical and/or numerical tools, plus boundary information on the adjacent edge, T, 
evaluate the individual stresses throughout Rz. The region Rz might well involve a 
stress concentration. In some cases, because the measured data are unreliable on the edge 
T, experimental information is collected only away from the edge, although the final 
individual stresses are evaluated throughout the entire region Rz, including along the 
edge, T, of Rz.lt may then only be necessary to map the edge T and its adjacent region 
Rz into the £ plane, Figure 1. 

For a region Rz adjacent to a circular fillet or notch of radius R, the conformal trans- 
formation 

z = co(Q = iRe"''c+z(. (12) 

maps the region R^ of the C, -plane into the physical region Rz of the z -plane, Figures 
1 and 2, where zc is the center of the discontinuity [1,2]. The circular boundary T in 
the physical z-plane is conformally mapped onto T^, a section of the real axis (t| = 0 
surface) of the £ -plane. For orthotropy, one has the following induced mapping 
functions: 

Zj = (ÖJ(Cy) = l-[(1 - i\Lj)-t*J - (1 + Hij)fj ], j = 1,2. (13) 

The relationship between the two relevant stress functions of Equations (9) is 

¥(i;2) = BO(C2) + C<D(C2), (14) 

where 
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*0,S   ^—1, 

Figure 2:   Thermoelastically measured S* in vertically-loaded 
symmetrically notched (radius R) composite strip. 

(15) 

Traction-free conditions on the boundary of the physical z -plane are enforced by these 
relations which reduce the two stress functions into a single stress function, i.e., <I> for 
anisotropy. This is accomplished by introducing the conformal mapping function co(£) 
which maps the traction-free physical boundary onto say the real axis (T| = 0 surface) of 
the £ -plane. 

The representation of the stress function 3> in the £, -plane can be approximated by a 
truncated power series, 

flxw-s^-Co)7}. (i6) 
j=0 i 

Location £0 is some point on the boundary T^ (r\ = 0 surface). From Equations (9), 
(14), (15) and (16), for orthotropy, 

a^=2SRe 

IV\B 

(O&z) 

Ov=2IRe 
;=i 

.ifc(&-fc)M+4o&(t'-t')M 

«2-Co)'"' 

^(?'-C°)M+^-W'-' 
(17) 

^h^'-' 



xxy=-21 Re 

MiB 

co2(C2) 
(^2 "Co)' 7-1 

(17) 

By using conformal mapping and continuation techniques, Equations (17) imply that the 
stresses satisfy traction-free conditions in the adjacent portion of the entire boundary. 
However, unlike a classical boundary-value problem where one would typically evaluate 
the unknown coefficients, Ajt by satisfying the boundary conditions around the entire 
shape, one can use some combination of the measured stresses of Equations (17) from 
the interior of the region Rz of interest to determine these unknown coefficients. 
Additional known boundary conditions can also be imposed at discrete locations. 

An example of employing some combination of the stresses of Equations (17) is to 
choose the .x-axis of an orthotropic composite material parallel to its strong, stiff direc- 
tion (i.e., 1-direction) such that thermoelastic data 5* can then be expressed as 

j{Kx\i\ + K2) ■_!    j(Ky\ + K2)C ■_,' 
r.vrr \     ^i~^o)     +  , r   (t^-W 
^ICJI) o)2(Q2) 

(18) 

j{Ky\+K2)B 
(C2-Co> 7-i 

The Aj coefficients can now be evaluated from thermoelastically measured input values 
of S* and Equations (18). Thermal mechanical coefficients AT, and K2 of Equation (18) 
are normally determined experimentally. 

3. Results 

Figure 2 shows thermoelastic data throughout an edge section of a vertically-loaded 
strain-gaged composite (Eu/E22 = 2.4) strip containing symmetrical side notches of 
radius R = 6.35 mm. These measured values of S * were used with Equation (18) to 
evaluate the Aj coefficients and hence the stress functions of Equations (14) and (16), 
from which individual stresses along and adjacent to the notch boundary were obtained 
from Equations (17). The resulting strain between the side notches is compared in Figure 
3 with those from strain gages and FEM. In this case 141 measured interior values of 
S* were used between 1.2 R and 2.5 R, together with ax = x^ = 0 imposed at 13 
locations along the traction-free vertical straight edge below the notch and x^ = 0 at 20 
positions along the vertical and horizontal lines of symmetry to evaluate the 26 
unknown coefficients of Equation (16). 

Displayed results use measured thermoelastic data. We have also found this general 
hybrid approach to be advantageous for determining stresses from holographically 
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Figure 3: Longitudinal strains between the side notches in the tensile 
composite strip of Fig. 2 as obtained from strain gages (G), 
FEM and thermoelasticity. 

measured isopachics, pure isochromatics (without the need of isopachics or isoclinics) 
and moire [1-9]. Moreover, synergizing such analytical and numerical concept tools 
enables one to determine accurate stresses at reentry corners using essentially classical 
FEM but with only a few, very coarse elements [10]. Applications include stress 
analysis of isotropic and orthotropic structural and machine elements, wood engineering 
and fracture mechanics. Reference 11 describes a new, nondestructive hybrid 
experimental-theoretical-numerical method for stress analyzing 3-D components from 
measured (thermoelastic plus photoelastic) surface information. 

4.   Sumary, Conclusions and Discussion 

Whereas individual experimental, theoretical or numerical methods of stress analysis are 
often lacking, synergizing aspects of the specific approaches can be very advantageous. 
Space permits emphasizing here only the benefits of combining theoretical and 
numerical concepts with measured thermoelastic data, but applications to moire\ 
isochromatics, holography and finite elements are also indicated. 
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WITH INTEGRATED PHOTOELASTICITY 
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Abstract. In the case of weak birefringence integrated photoelasticity al- 
lows for the determination of the distribution of the normal stress in any 
section of a 3-D specimen. In the case of axial symmetry distribution of the 
shear stress can also be determined. The question arises how to determine 
the other stress components. This problem of hybrid mechanics is espe- 
cially complicated by investigating residual stresses in glass since residual 
stresses are caused by incompatibility of residual deformations. Due to that, 
direct application of the compatibility equations is not possible. In this pa- 
per formulas are derived for the complete determination of residual stresses 
in glass in the axisymmetric case and in the case of plane deformation. 
Examples of complete residual stress analysis are given. 

1.   The Case ofWeak Birefringence 

In integrated photoelasticity [1] the specimen is placed in an immersion 
bath and a beam of polarised light is passed through the specimen (Fig.l). 
Transformation of the polarisation of light in the specimen is measured on 
many rays. In certain cases this integrated optical information enables one 
to determine distribution of some components of the stress tensor. 

In the general case, due to the rotation of the principal stress direc- 
tions on the light rays, optical phenomena are complicated and so are the 
algorithms for the interpretation of the measurement data. Howewer, if 
birefringence is weak, photoelastic measurements with a 3-D specimen can 
be carried out similarly to the 2-D case [2, 3]. That is, on every ray it is 
possible to measure the parameter of the isoclinic <p and optical retardation 
A. The latter are related to the components of the stress tensor on the ray 
by simple integral relationships 
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Specimen 

Figure 1.    Experimental setup in integrated photoelasticity. 

A cos lip = C / (crz - ox)dy = V\, 

A sin 2<p = 2C I Tzxdy = V2. 

(1.1) 

(1.2) 

Here C is the photoelastic constant and ax,az and TZX are components 
of the stress tensor in the plane zx which is perpendicular to the wave 
normal y. 

Using numerical experiments it has been shown [2] that in the case 
of axial symmetry relationships (1.1) and (1.2) are valid if A is less than 
3A/4 (A denotes wavelength), and rotation of the principal directions is not 
strong. In the general case Eqs. (1.1) and (1.2) can be used if A < A/3. 

2.   Axisymmetric Stress Distribution 

2.1. STRESSES DUE TO EXTERNAL LOADS 

In the case of axisymmetric stress distribution, Eqs. (1.1) and (1.2) permit 
determination of the distributions of the axial stress az and shear stress 
TTZ. The other stress components, <rr and &$, can be determined using the 
equilibrium equation 

—- + —— 
dr T 

^ + ^ = 0, 

and the compatibility equation 

dee     €r — eg 

dr r 
= 0, 

(2.1) 

(2.2) 
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where er and eg are components of the deformation tensor in cylindrical 
coordinates. Introducing into Eq. (2.2) the Hooke's law 

eT = har-fi(a9 + az)] + aT, (2.3) 

eg = ^[ae-p{crz + (rr)] + aT, (2.4) 

ez = i[ff, - n(ar + cg)\ + aT, (2.5) 

we obtain, taking T=const: 

Uag - far + *.)) ~ (1 + M)2^ = 0. (2-6) 
Or r ■ 

Here J5 is the elasticity modulus, \i is the Poisson coefficient, a is the 
thermal expansion coefficient and T is temperature. The algorithm for de- 
termining at and os from Eqs. (2.1) and (2.6) has ben elaborated by Doyle 
and Danyluk [4, 5]. 

2.2.  THE CASE OF RESIDUAL STRESSES 

In the case of residual stresses in glass, in Eqs. (2.3) to (2.5) the term 
aT must be included. Since residual stresses in glass have thermal origin, 
they can be considered as being caused by a fictitious temperature field 
[6, 7]. Unfortunately, this temperature field is not known. Therefore, the 
compatibility equation cannot be used when investigating residual stresses 
in glass and one has to look for other analytical relationships between the 
stress components. 

Thermal stresses in an axisymmetric body can be expressed as [8]. 

,d2F     , „x .     2G_d_    A r     d
2Ly 

2ndz( 

.18F     A „x   ■    IG    d ,   A T     101, 

»'-'W^-^ + TZä.E^-»?). <2J> 

„( = 2G(-_-AiO + —^Ai--^), (2.8) 

where F is stress function and L Love's displacement function, 

AF = i^aT,    AAL = 0,    G=   „^    ,,    A = ^ + -— + ä~j. 
l-/x 2(1 + p)      ■      dr2     rdr     dz2 

(2.11) 
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Let us assume that a long cylinder or tube is manufactured by solidify- 
ing it in an axisymmetric temperature field without gradient in the axial 
direction. In this case the thermal (and residual) stresses are the same in all 
cross sections of the cylinder, except the parts near the ends of the latter. 
Now from Eqs. (2.7) to (2.9) follows the classical sum rule 

or + o$ = oz. (2.12) 

The classical sum rule (2.12) was in a somewhat different way first 
derived by O'Rourke [9]. 

Using the equilibrium equation (2.1) and the classical sum rule (2.12), 
all the residual stress components can be determined. This method has 
been widely used for residual stress measurement in glass cylinders, and in 
axisymmetric fibers and fiber preforms [10, 11]. 

In the general case, in axisymmetric glass articles stress gradient in axial 
direction cannot be ignored. Let us try to derive from Eqs. (2.7) to (2.10) 
a relationship between stress components for that case. 

If stress gradient in axial direction is present but smooth, we may write 

Now from Eqs. (2.7) to (2.10) follows 

or + oe = oz + ^-A^ _ i)AI]. (2.14) 

Differentiating (2.10) relative to z and integrating along r reveals 

where C(z) is the integration constant. 
From (2.14) and (2.15) follows 

aT + ae = o2-3      -£-dr + C(z). (2.16) 
Jo    oz 

The last relationship is named the generalized sum rule. It is valid when 
stress gradient in the axial direction is present, with certain restrictions 
(2.13) upon the functions F and L. Actually, Eq. (2.16) is first approxima- 
tion of the generalized sum rule. By handling Eqs. (2.7) to (2.10) asymptot- 
ically, higher approximations of the generalized sum rule can be obtained. 

As a practical example, residual stress distribution in a section of an 
axisymmetric article of optical glass is shown in Fig. 2. 
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Figure S.    Geometry of the axisymmetric article of optical glass (a), and distribution of 
residual stresses in section 06 (b). 

3.   Specimens of Arbitrary Shape 

In the case of articles of arbitrary shape, measurement of the integrals 
(1.1) and (1.2) should be carried out scanning two parallel cross sections, 
Az apart from each other, under different angles 0 (Fig. 3). From the 
equilibrium condition of the segment ABC one obtains 

/    uzdy' = 
JA 

1 
2CAz [L'w-t V2dx' c (3.1) 

Here V2' denotes the value of V-j for the auxiliary section. 
Formula (3.1) enables one to calculate the line integral of az for any light 

ray. From tomography it is known that if one can measure line integrals of a 
certain field along many rays then the field can be reconstructed using the 
Radon inversion [13]. In this respect we are actually dealing with optical 
tomography of the stress field which has been considered in papers [14, 15]. 

Unfortunately, in the general case of a 3-D article axial stress az is the 
only stress component which can be determined directly from the measure- 
ments. 

Tu-no 
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4.   The Case of Plane Deformation 

In cylindrical coordinates an algorithm for complete stress determination 
has been considered by Puro and Kell [16] who have used their method for 
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Figure S.    Illustration to the investigation of the general 3-D state of stress. 

-a 

-b 

Figure 4-    Considering plane deformation in rectangular coordinates. 

stress measurement in an optical fiber preform of complicated cross section. 
Let us consider the same problem in rectangular coordinates (Fig. 4). 

Our aim will be to express the stress function <p through the axial stress 
az which we can determine directly from the measurement data. 

Let us express the stress function <p(x, y) in the form 

lp(x,y)=z Yl Qik<Pik(x,y), 
i,k=0 

(4.1) 

where 
2\2/-„.2       i2\2„2i..2fc ¥>*(*,*) = (* -«W-*T**y (4.2) 
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Figure 5.     Distribution of the normal stresses ox (a) and ot (b) in a quadrant of the 
glass prism. 

It can be shown that the coefficients a^ can be determined if distribu- 
tion of az is known. Knowing the stress function, the normal stresses ax 
and Oy are determined as 

7X =  £ di 
:,k=o 

d2<fik 
: dy2 av-^Ls ai> 

i,k=0 

d2<fik (4.3) 

The method described above has been used for complete determina- 
tion of the residual stresses in a glass prism of quadratic cross section 
40 x 40 mm. Axial stress distribution was determined with an automatic 
polariscope passing the light through the cross section of the prism in 60 
directions (step 3 deg). For every direction of observation optical retarda- 
tion was recorded at 140 points. Since in the middle of the prism stress 
gradient in axial direction can be ignored, we have practically the case of 
plane deformation. 

The stress function was approximated in normalized coordinates as 

<p{x,y) = (x2-l)2{y2-l)2[a0o + Qw{x2 + y2) + anx2y2).        (4.4) 

Distribution of the normal stresses crz and ax is shown in Fig. 5. Macrostatic 
equilibrium conditions for ax and crz are well observed. 

Tu-LlO 
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5.   Conclusion 

It has been shown that after distribution of the normal stress oz has 
been measured experimentally with integrated photoelasticity, axisymmet- 
ric thermal stresses (or axisymmetric residual stresses in glass) and stress 
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distribution in the case of plane diformation can be completely determined 
using relationships derived from the equations of the theory of elasticity. 
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Abstract 

Phase analysis methods provide accurate results of fringe pattern analysis. A phase 
shifting method using Fourier transform uses many images obtained by changing the 
phases of fringe patterns. The phase at each pixel point is analyzed by calculating the 
argument using Fourier transform of the phase shifted brightness at the pixel point. It is 
applied to the analysis of fringe patterns obtained by a Twyman-Green interferometer and 
photoelastic fringe patterns obtained by a linear polariscope. Furthermore it is extended to 
a phase shifting method using correlation with rectangular functions to measure a 3-D 
shape by a grating projection method. 

1. Introduction 

Small displacement, stress and optical shape of specimens are able to be measured by 
using optical interferometry such as moire interferometry, Twyman-Green interferometry, 
Fizeau interferometry and photoelasticity. The shape of a 3-D object is also measured by 
grating projection methods. The displacement and the shape are measured by analyzing 
the images of fringe patterns. The analysis of fringe patterns by hand requires great skill. 
It is, furthermore, tedious and it consumes much labor and much time because of an 
enormous amount of two-dimensional data. The images are recently analyzed by a 
computer using digital image processing technique to perform automated, high speed and 
accurate analysis [1-3]. In the early stage of fringe pattern analysis using computers, the 
analysis methods were similar to the method by hand. It required skillful technique to 
obtain the positions of the center lines of fringe lines and to determine fringe orders. 

To analyze interference fringes accurately, phase-measurement techniques [4-19] 
becomes popular. A fringe pattern obtained by optical interferometry usually has a 
cosinusoidal brightness distribution. If the phase information of the cosinusoidal 
brightness is analyzed at each pixel point on the image, the displacement at each point of 
the whole interference field is obtained accurately. 
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There are some methods for the phase analysis. The first is the phase stepping 
method (PSM) [5-6] using a few images obtained by changing the phase shift amount. 
The second is the Fourier transform moire and grid methods (FTP, FTM or FTMGM) [7- 
12] using one image. The third is the phase shifting method using extraction of 
characteristic (PSM/EC) [13-14] using many images obtained by changing the phase shift 
amount. The method obtains the phase distribution by detecting the maximum brightness 
on each pixel point of the fringe images while the phase of the images shifts through 2n. 
As the fourth, the authors developed a method using wavelet transform to analyze phase 
information from one image [16]. The authors also proposed a method using Gabor 
transform [17]. 

In the PSM, the accuracy is not good in case that the image input equipment has 
nonlinearity or the images have noise and phase shift error. In the FTMGM, the results 
include some errors at the both edges of the image if the image has a discontinuity at the 
both edges of the image. The PSM/EC does not require any complicated processing 
which the PSM and the FTMGM require. It resists the nonlinearity of the image input 
equipment. But this method is more sensitive to noise such as random noise and phase 
shift error than the Fourier transform methods. Though the wavelet transform method 
gives accurate strain distributions, it requires too much time to calculate. The Gabor 
transform method can be applied to wider frequency region than the FTMGM. 

Bruning et. al. [4] proposed a phase analysis method using several images obtained 
by changing the phase shift amount. The authors applied this method to the measurement 
of beam deflection [14]. The authors also applied it to the photoelastic fringe pattern 
analysis to separate the isochromatics and the isoclinics from the images obtained by a 
plane polariscope [15]. The authors call this method the phase shifting method using 
Fourier transform (PSM/FT). These methods are useful to obtain a wrapped phase 
distribution using a 3-D image. Huntley et al. [18] introduced a phase unwrapping 
method using a 3-D image. 

Furthermore the authors extend it to a phase shifting method using correlation to 
measure 3-D shapes by a grating projection method. 

In this paper the phase shifting method using Fourier transform applied to Twyman- 
Green interferometer and a plane polariscope are introduced, and also the phase shifting 
method using correlation of the rectangular brightness of a projected grating and two 
rectangular functions to analyze 3-D shapes are explained [19]. 

2. Phase shifting method using Fourier transform applied to Twyman-Green 
interferometer [14] 

2.1 THEORY OF PHASE SHIFTING METHOD USING FOURIER TRANSFORM 

Let us show the theory of the phase shifting method using Fourier transform, PSM/FT. A 
fringe pattern obtained by interferometry such as Twyman-Green interferometry, moire 
interferometry and holographic interferometry has a cosinusoidal brightness distribution. 

The fringe pattern is usually produced by the interference between two beams i.e. an 
object beam and a reference one. If the optical path of one of the beams is moved a little in 
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the direction normal to the optical path, the phase of the fringe at every point is shifted by 
a constant value. The brightness distribution f{x, y), when the phase shifting is performed, 
is expressed as follows: 

fix,y)=a{x,y)-cos{<t>(x,y)-a}+b(x,y) (i) 

where c(x, y) is the amplitude of the brightness, b(x, y) is the average brightness, <p(x, y) 
is the phase value which we have to analyze at any point {x, y) on the original fringe 
pattern, and a is the amount of the phase shift of the optical path. When the interferometer 
has an object beam and a reference beam, the phase shifting is usually performed by 
moving a mirror with a piezoelectric transducer (PZT) or by tilting a glass plate in the 
reference beam. The phase is shifted little by little until the amount of the phase shift a 
covers from 0 to 2JC, and every 2-D (x, y) image is recorded. A 3-D (x, y, a) image 
consists of the sequentially phase shifted 2-D (x, y) images. Figure 1(a) shows an 
example of a 3-D image when the number of the 2-D images is six. Figure 1(b) shows the 
brightness distributions along an ^-directional line of the 3-D image. In the same pixel 
point on the x-y plane of this 3-D image, the a-directional brightness distribution is one 
cycle of a cosinusoidal form. An example is shown as a thick line in the figure. 

In the method PSM/FT, the brightness distribution/(x, y) expressed in Eq. (1) is 
regarded as a function of a. The a -directional brightness distribution f(a) is expressed in 
the Fourier series with respect to a, because it is a periodic function with a period T-2n. 
That is 

/(«)=X cn-exp(jnö0a) 
«=- (2) 

where 

1 n 
c,r=yJ^flO-exp(-jnfflboOda 

(3) 
j is the imaginary unit and öb(=l) is the fundamental frequency. 

The a-directional Fourier transform of Eq. (2) is 

F(Q)=\ yia)-exp(-j©a;)dö=X c"    exp(j«ü)oa)exp{-ja(rtQ)o - nco)}da 
J— rt=-°o /_ 

= ]£ 2rt-c„-8(ü)-«ü)o) 
/!=-■» (4) 

where co is frequency and 8 is the Dirac delta function. If the phase shifting is performed 
perfectly and the 3-D image data have no noise, the frequency spectrum expressed in Eq. 
(4) appears only at the frequency co = -1, 0, 1. By substituting Eqs. (1) and (3) into Eq. 
(4) when o)=l and n=l, F(fflo) is obtained. 

Tu-GL4 
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F(Oo)=y-o(0) I f(a)exp(-ja0a)da = b(0)\   {a-cos(<p - a)+b}'exp(-ja)da 

=7t-a-8(O)-exp(-j0) (5) 

This means that the phase value 0 is obtained by calculating the argument, i.e., the 

arctangent of the ratio of the imaginary part to the real part of F(ffijj): 

) = - tan' 
Im{F(Gb)} 

LRe{F(^)} (6) 

Like this, the phase distribution <p (x, y) is obtained. The displacement or the shape of the 
specimen is calculated from the phase distribution. 

In this method, because only the harmonic with frequency 1 is extracted, phase 
shifting error and the other experimental noise which appears at other frequency 
components are eliminated. 

a =57t/3 

a=n/3  /I s\ ^T 
nr=f)^l ^N r\ 

(a) Phase shifted fringe pattern        (b) Brightness distribution along a line 
Figure 1. jr-directional brightness distributions of phase shifted fringe patterns of 3-D image 

2.2 EXPERIMENT FOR CANTILEVER BEAM 

2.2.1 Experimental procedure 
Figure 2 shows an application of the PSM/FT to the measurement of the out-of-plane 
displacement distribution of a cantilever beam using a Twyman-Green interferometer. 
Figure 3 shows the specimen and the measured area of this experiment. The specimen is a 
glass plate and it has an initial deformation. One end of the plate is fixed on a thick steel 
plate with a plastic glue and it is deformed at one line near the other end shown as the 
dashed line in Fig. 3. The displacement value at the loading point is 2u,m. 

In this study, the phase shifting in the interferometer is performed by moving the 
reference mirror with a PZT control stage. The resolution of the stage movement is fine in 
the order of a few nanometer, the stage is moved along the optical path, as shown in the 
plain arrow line in Fig. 2. A reference mirror is moved little by little, and all the images 
are recorded in an image grabber system through a CCD camera. The phase at each pixel 
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PZT control stage 

[Personal computer 
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| Image monitor] 

Specimen 

Lens 2 

Spatial filter 
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(SUN work station) 

0> He-Ne laser 

Twyman-Green interferometer Loaded line 

Figure 2. Schematic diagram of experimental system Figure 3. Specimen and measured area (Unit mm) 

point of the interference image is analyzed as mentioned in the previous section. In order 
to calculate displacement, the sequential phase shifted images before and after deformation 
are recorded respectively. The difference Aty of the phases at each pixel point between 
images before and after deformation is analyzed. The displacement is calculated from the 
following equation. 

u=-^-A<p 
4n (7) 

where u is the displacement and X is the wavelength of the laser. In this experiment, a He- 
Ne laser is used as the light source, the wavelength X is 633 nra, 

2.2.2 Experimental results 
Fig. 4 shows some parts of the sequential phase shifted fringe patterns before and after 
deformation respectively. The fringe images before deformation represent the initial 
deformation of the specimen and the optical system. The amount of one step of the phase 
shift is rc/15.   The 3-D image consists of 30 phase shifted 2-D images.   Figure 4 shows 

(a) Before deformation (b) After deformation 
Figure 4. Phase shifted fringe patterns of 3-D image; 
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Figure 5. Fourier spectrum (After deformation) 
-it n (rad) 

(a) Before deformation (b) After deformation 
Figure 6. Wrapped phase distribution 

Figure 7. Displacement distribution obtained by the PSM/FT (3-D plot) 

-20      -10 0 10        20        30        40 
Positron (mm) 

Figure 8. Displacement curve along x-directional center line 
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only 4 2-D images to understand easily in visualization. After performing the a- 
directional Fourier transform on the 3-D image using the mixed radix FFT as used in our 
previous method [11, 12], the Fourier spectrum for the data after deformation are 
obtained as shown in Fig. 5. This figure shows only 5 2-D images although there are 30 
2-D images. The brightness corresponds to the amount of the real part of the frequency at 
the pixel point. The brightness is low in the images except the frequency 1, 0 and -1. 
They are showing the error components. By extracting the frequency with 1 and 
calculating the argument at every point, the wrapped phase distribution is obtained as 
shown in Fig. 6. After connecting the wrapped phase distributions smoothly by adding 
± 2% at the discontinuity, the unwrapped phase distributions are obtained. The 
displacement distribution is calculated from the difference of the phases between before 
and after deformation. The result is shown in Fig. 7. Figure 8 shows the displacement 
curve along the ^-directional center line. The theoretical curve is shown in Fig. 8 for 
comparison. 

3. Phase shifting method using Fourier transform applied to plane 
polariscope [15] 

In photoelasticity, the image obtained in the field of a plane polariscope consists of 
isochromatics and isoclinics. In analysis of stress, though it is necessary to separate the 
isochromatics and the isoclinics, it is difficult. The most popular method is to use the 
isochromatic fringe image captured in the field of a circular polariscope [20]. The 
isoclinics are not obtained by a circular polariscope. The positions of the isoclinics 
obtained by a plane polariscope are not so accurate because of the wide width of the 
isoclinic lines and the accuracy of quarter wave plates. The authors [13] developed a 
software of 3-D image processing, and applied it to the analysis of the 3-D (x, y, 0) 
image data consisted with the spatial coordinates (x, y) and the angle 6 of the crossed 
polaroids. 

In this section, the phase shifting method using Fourier transform applied to the 
separation of the isochromatics and the isoclinics is shown. 

3.1 THEORY OF SEPARATION OF ISOCHROMATICS AND ISOCLINICS 

The light intensity obtained in a dark-field plane polariscope, shown in Fig. 9, is 
expressed by 

i(9) = ahin 2{2(<p - 0)}-sin \m%) ,g) 

= ^{l-cos4(4>-0)}-sin2(mrc) 

where a is the amplitude of the incident polarized light, <j> is the angle of the principal 
stress and 6 is the angle of the analyzer and m is the isochromatic fringe order. The fringe 
order m is expressed as follows: 
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Figure 9. Schematics of polariscope and image processor 
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Figure 10. Specimen 

(10) 

where C is the photoelastic constant, d is the thickness of the specimen, X is the 
wavelength and {a, - a2) is the principal stress difference of the specimen. 

Equation (8) is expressed in the Fourier series with respect to 6, because it is a 
periodic function with a period T=n/2. That is 

i(9) =   X    c n exp(jnöo0) 

n = -oo 

where 

and 

^1 
(0)-exp(-jno>o0)d0 

(11) 

(12) 

(13) 
ßv, = 2s. = 2K = 4 

The Fourier transform of Eq. (11) is 

7(ü))= I   f(0)-exp(-jo)0)de =   X    c*      exp(JMü)o8)-exp(-j<u0)d0 

oo 

=   £    27t-cn5(eo-KOo) 
n = -oo (14) 

where j is the imaginary unit, co is frequency and 8 is the Dirac delta function. 
Equation (14) indicates the discrete frequency spectrum which appears only on the 

frequency components ncOQ (n=0, ±1, ±2- ■ ■). By extracting the delta functions 
2n-c 05(0) and substituting Eq. (9) and Eq. (12) into Eq. (14) when «=0, 2nc0(n=0) is 
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obtained. 

2nc0 = ^-\2 i(9)de 

~2 
-iß 1 -cos4(0-0)}-sin2(mn)d0 

>!> 
= 2a2sin \mn) \   {1 - cos 4(</> - 0))d0 = JW2sin 2(mrt) 

(15) 

2rcco = rca2sin 2(mn) is obtained from the amplitude at (0 = 0 of the Fourier spectrum of 
the 0 directional brightness distribution. Equation (15) indicates that the isoclinics are 
eliminated. That is, the image of 2TCCO shows the isochromatics in the whole field of the 
specimen. 

In the same way, from Eq. (9), Eq. (12) and Eq. (14) where n=-\,    can be written 
as 

[\ 
2jtc.1=22Lf j'(0)-exp(jG)o0)d0 

1jJ. 
2 

-i 4(l - cos 4(0- 0)}-sin 2(m7t)-exp(j40)d0 

= 2a2sin 2(mn) 
4 exp(j40)d0 -11 * [exp{j4(0 - 0)}+exp(-j4(0 - 0)}]-exp(j40)d0 

= - a2sin 2(m7t) 14 exp(j40)d0 +    * exp{-j4(0 ■- 20)}d0 

= - ^a2sin 2(m:t)-exp(j40) 
(16) 

The argument 40 is obtained by calculating the arctangent of the ratio of the 

imaginary and real parts of 2rcc,: 

^      |Re(27tc.,)| (17) 
Equation (17) indicates that one fourth of the argument is equal to the direction of 

principal stress. 
In this method, by calculating the Fourier transform of the sequential images 

captured by the rotating the angle 9 of the crossed polaroids, the isochromatic image is 
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obtained from only the intensity data of the frequency where (0 = 0. The direction of 
principal stress on each point is computed from only the argument where © = - 0%. The 
other frequency components, in other words, experimental noise is completely eliminated. 

3.2 EXPERIMENT FOR PLATE WITH ELLIPTIC HOLE 

The photoelastic experiment system with the crossed plane polariscope is shown in Fig. 9. 
Figure 10 shows the specimen made of epoxy resin. The rectangular plate has an elliptic 
hole at the center. The constant tensile load along the y axis yielding on the specimen is 
6.5 N. The polaroids are rotated in the crossed position when the angle 0 is from -45° to 
44° 

Ninety sequential 2-D images recorded at every V angle of 0 from -45° to 44° with 
a CCD camera are stored into a hard disk. One mm corresponds to 1.98 pixels. The 
ninety 2-D images are treated as a 3-D image as shown in Fig. 11. The size of the 3-D 
image is 128 (width) x 120 (height) x 90 (depth) pixels. The 3-D image data are directly 
processed using the 3-D image processing program including Fourier transform 
programmed by the authors. 

The mixed radix fast Fourier transform (MRFFT) in the 0 direction yields the 3-D 
image data, i.e. the Fourier spectrum as shown in Fig. 12. In this figure, the 2-D image at 
(0= 0 shows the isochromatics. Figure 13 is the isochromatics. 

By calculating the arctangents of the ratios of the imaginary parts and the real parts of 
the data in the frequency at a = - 0^, the directions of principal stresses are determined in 
the whole field of the specimen as shown in Fig. 14. 

This method is insensitive of high frequency noise, because the high frequency 
components are eliminated using Fourier filter. The positions and angles may have finer 
resolution than those in the conventional method, because the data obtained using Fourier 
transform is naturally smooth. 

e=o° -' 
e=-i->' 

(0=45 0)o 
co=44ouo , 

<JT*^ 
e=-44>' 

e=-45 

Figure 11. Three-dimensional image data 

(D=-(üo 
(o=-43(üo 

Cö=-44(ün 

Figure 12. 0 directional frequency spectrum of 
image data of Fig. 11 
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Figure 13. Isochromatics obtained by PSM/FT Figure 14. Distribution of principal stress direction 

4. Phase shifting method using correlation with rectangular function 
applied to 3-D shape measurement [19] 

In this section, we propose a new phase shifting method to analyze phase distribution 
using the correlation between the brightness of the projected grating and a rectangular 
function. Figure 15 shows the brightness distributions of the projected grating at a pixel 
point while the projected phases are shifted. Figures 15(a) and (b) show examples when 
the initial phases of the grating projected at the points are 0 and (j>, respectively. The 
distribution is a rectangular function with a period 2K. The upper and lower brightness 
intensities are mainly depending on the reflection ratio of the object. After normalizing the 
brightness, the normalized brightness is multiplied by two weight functions f0 and /, 
shown in Fig. 16 (a) and (b), respectively. Figure 16(a) is a rectangular weight with 
phase 0. Figure 10(b) is a rectangular weight with phase n/2. The products are integrated 
from a=0 to a=2n, respectively. 

Figure 17(a) shows the relationship between the initial phase <j> and the integration 
values S. From the two integration values S0 and St obtained by two weight functions /0 

and/,, respectively, the phase (j> is determined as wrapped phase <j>' uniquely from the 
following conditions. 

<t>' =-S,/4 whenS0>S,andl50l>l5,l 
<j>' = - S 0/4 + n n when S 0 > S, and IS 01 < I Sl I 
<j>' = - 5 0/4 + n 12 when S 0 = S, and 5 0 < 0 
<j>' =5,/4-7t        when S0<S,, 5, >= Oand IS0I> 15,1(18) 
<{>' =SJ4 + n        when50>5,,51 < 0 and 1501 > 15, I 
(j)' = - S0/4 - K 12 when S 0 < Sx and IS 01 < IS, I 
<!>' = - S 0/4 - it 12 when S 0 = 5, and S 0 > 0 

The results are shown in Fig. 17(b). 
Since this algorithm is very simple, it is easy to perform high-speed processing. 

Since the grating brightness function is rectangular, the non-linearity of input devices 
does not affect the results. 

This method is applied to shape measurement of a rubber ball and a metal spoon. 
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The projected grating is shifted by 2rc/32, and the 32 products are calculated and added. 
All the images are used for this analysis. As we use only a conventional personal 
computer, in this paper, the processing time is a few second. It is, however, possible to 
make a real-time hardware for this method. 

Figure 18(a) shows one of the 32 images. The resultant phase distribution is shown 
in Fig. 18(b). This method is useful even if the material of an object is metal because the 
use of a grating with rectangular brightness can detect the brightness change. 
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5. CONCLUSIONS 

The phase shifting method using Fourier transform (PSM/FT) has been introduced to 
analyze the phase distribution of interference fringes. In this method many sequentially 
phase shifted fringe patterns are required, however, the effect of noise and phase shifting 
error of the patterns are eliminated by performing the a-directional Fourier transform and 
extracting the harmonic with frequency 0, 1 or -1. This method is more insensitive to 
noise than the other methods and error does not appear at the both edges of the image 
unlike the results obtained by the conventional 2-D Fourier transform method (FTMGM). 
If accurate phase shifting is performed, the phase is analyzed from only a few phase 
shifted fringe images. The PSM/FT has been applied to measurement of the displacement 
distribution of a cantilever beam using Twyman-Green Interferometer. 

The PSM/FT has been applied to the separation of the isochromatics and the 
isoclinics obtained in the plane polariscope. The isochromatics and the isoclinics are 
separated almost automatically from the 3-D image data obtained by rotating the crossed 
polaroids. 

Full automated analysis is possible and this method is useful for not only optical 
interferometric fringe analysis but also the other fringe pattern analysis such as shape 
measurement by the grating projection method. 

The authors have also proposed the real-time phase shifting method using correlation 
with two rectangular functions. By using this method, the 3-D shapes of a ball and a 
spoon have been analyzed. 

This study is supported by Research Project (Project No. 09555033), the Grant-in- 
aid for Scientific Research of the Ministry of Education, Science and Culture. 
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Abstract. Optical methods of deformation measurements represent one of the oldest and 
the most widespread area of experimental mechanics. The optic methods of strain 
measurements are generally-interferometry, stereo image analysis and digital image 
analysis. The above-mentioned optical methods are of particular importance for 
deformation analysis in microstructures and microobjects, where they are the only 
possible experimental tools. The basis of the stereoscopic technique of deformation 
measurements is the taking of pair stereoscopic photographs of objects, using the time 
base principle, i.e. photographs of objects before and after the deformation under the 
entirely same conditions are taken. The further step in stereoimage method of the strain 
analysis is the stereocomparation of the pair of images. Up to now we have used for it 
the analog apparatus ZEISS-Stecometr. The paper which is presented describe a digital 
system of reading and comparation of the pairs of stereoimages. 
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1. Introduction 
Optical methods of deformation measurements represent one of the oldest and the most 
widespread area of experimental mechanics. The furthest and the most frequently used 
principle of optical methods is interference [1], and almost a hundred years old history 
has the stereoscopic principle [2]. Newer are photomethods applying image analysis to 
calculate coordinates of identification points fields [3]. 

The above-mentioned optical methods are of particular importance for deformations 
analyses in microstructures and microobjects, where they are the only possible 
experimental tool. Evolution of optical methods of deformations measurements in the 
field of experimental micromechanics commences at the end of 1980s. In the field of 
interferometry there are contributions of Sciammarella [4], and Michel and Kühnert [5]. 
Stereoscopic method was employed by Davidson [6], and Berka and Rü2ek [7]. Image 
analysis of microidentification point structures was worked-in-progress by Allais [8] and 
Fischer [9]. 

At present, the best sophisticated and the most frequently used method in this area is the 
interferation micro-moire' technique of D. Post [10]. In our country, Väclavik and 
Minster [11] are working with this technique. Advantage of it is the full-surface scan of 
deformations field and the high accuracy, reached by using grids pairs with the density 
of 1200 lines/mm, positioned both in the interferometer and also in the measured object. 
Development of the technique was influenced also by the rapid evolution of image 
analysis and digital technique, enabling measurement in the real time. 

Evolution of the stereoscopic method of deformation analysis is connected with the 
overall development for evaluation of pairs stereoscopic photographs. This results from 
the fact that taking photographs and their analysis does not take place simultaneously. 
With regards to specific conditions of taking ground photographs by using special 
cameras, the evaluation systems are equipped with the high resolution scanners that 
markedly enhance purchase and operating expenses of these systems, and thus they 
become hard available. Users of stereoscopic measurement technique, who can work 
with digital image recording, gained by CCD camera or scanning electron microscope, 
therefore try to create on-line system enabling record, processing and comparation of 
images obtained by the time base method (Fig. 1). The system described in the following 
contribution is a digital image of the hitherto used analog system for recording and 
evaluation of stereoscopic photographs pairs, that was referred to on the previous 
conferences EAN [12]. 

2. The deformation analysis by the stereoimage technique 

The basis of stereoscopic technique of deformation measurements is the taking of 
stereoscopic objects photographs pairs, using the time base principle, i.e. photographs of 
objects before and after the deformation under the entirely same conditions. To fulfil 
this requirement, it is necessary not only for the image-taking apparatus, a microscope in 
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our case, but also for the CCD camera to ensure, by their external (sample and apparatus 
position) and also internal (magnification stability, orientation) a reproducibility of 
photographs with accuracy attributed on the deformation measurement accuracy. This 
can be different according to the nature of solved problem (elastic or plastic 
deformation). According to it, it is also necessary to choose an appropriate method. 

RECORD 
PHOTO DIGITAL 

VM y 

SOFTWARE 

recoid o( Images WlnTIp 1 
W!rf!ip 2 

comparation of Images Comparat 1 
Comparat 2 

calculation of strains AtTrH 

Figure 1. The schematic drawing of the measuring system 

Taking into consideration deformation measurements in the vicinity of the agreed 
plasticity limit of steel, having a size of 0.2 % with accuracy 10 %, i.e. value of AE = 
0.02 %, the requirement follows on the accuracy of the couple of stereoscopic 
photographs evaluation of undeformed specimen, obtained by the time base method. It 
means that after the first image processing, the specimen is undertaken to all necessary 
measurement operations, and then the second image is performed. Found values of 
Active deformations represent faults of measurements that must be lower than the 
required value of 10 % of plasticity limit. Deviations may result from: 
-- differences in the position and microscopic identity of sample surface in its taking out 
and reloading into the vacuum microscope chamber 
- differences in the resetting of microscope electronic regime during exchange or the 
switching the device off. 
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To minimize these deviations, it is necessary, regardless the type of a microscope, to 
choose such a method that will limit changes in the setting of device parameters, used in 
the first photographs processing, at maximum. This is the question of keeping the 
working distance and set magnification, whose deviations are equal to a relative error in 
their deformations measurements. Errors in the measured deformation can be caused 
also by overfocusing and higher differences in the brightness and contrast setting, which 
change dimensions of microobject image and thus conditions of the photographic 
comparison. 

Further group of errors is connected with the qualify of image recording, both 
photographic and digital. In case of the stereocomparation, besides identity of 
microsurface images, it is also internal resolution of stereocomparator Al, which at 
device ZE1SS Stecometr is 2 urn. The necessary precision in the deformation 
measurement equal to Ae = 0.0002 is reached at the photographic distance of compared 
points I equal to Al/Ac = 2/0.0002 = 1.10 urn. At the smaller points distance, the error 
is bigger than presumed 10 %. 

At digital system of evaluation of a stereoscopic pair of photographs, the accuracy of a 
points position is measured mainly by the resolution at which the image is taken. 

3. The reading and image processing - system TESCAN 

TESCAN has developed a device for digitization, preprocessing and recording of 
electron microscopic image. Hardware of the device is composed of personal computer, 
digital generator of scan signal and acquisition device of video signal, positioned on the 
special developed card in the ISA computer bus and converters units D/A and AID in 
the separate box, where there are the circuits for an option of input analog signal, signal 
filters, power supplies and auxiliary circuits. 

Signal for electron beam sweeping in the microscope tube is generated in the computer 
in the digital form. According to the generation principle, it is necessary to resolve fast 
and slow raster scanning. In the fast raster scanning mode - called "fast" in the program - 
the step signal is generated mainly by hardware tools - everything is subordinate to 
reaching the maximum speed of raster scanning. Sweeping is not synchronized with the 
power supply. This mode serves to the rapid scanning of specimen and to the 
microscope setting. 

Generated sweeping signal is then, in the D/A converters units, transformed from the 
digital form onto the analog signal, and in the output circuit, it is possible to set its 
polarity, amplitude and ss level suitable for an appropriate type of microscope (between 
-10 and +10V). The basic setting of system magnification is carried out here in order 
that the operating field of system may be concordant with the original field of electron 
microscope. 
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Analog video signal generated and strengthened in the microscope is brought via input 
switching circuits into an A/D converter. Even four signal from different detectors from 
the microscope is possible to transfer into the input circuits, and one of them to choose 
for display by means of the program. In the A/D converter, the analog video signal is 
converted onto the digital form simultaneously with the filtration - all higher frequencies 
that are not necessary for real image signal transmission are reduced, and thus the image 
noise is reduced. Digital video signal is then via special interface, located on the same 
card in the computer as a generator of sweeping, brought into the computer video 
memory and - as far as an operator commands by means of the control program - the 
image is set also on the chosen memory medium. 

The entire process of sweeping and image acquisition is controlled by the program that 
operates in the Window 95 environment and uses the standard image format BMP. The 
program includes also procedures for image preprocessing - brightness and contrast 
manipulation, image focusing and noise reducing. Program offers ample possibilities in 
the software calibration field of image magnification on the basis of known objects and 
measuring of formations in the image. 

The big attention in the program creation has been also payed to the comfortable and 
users-friendly storage system, which enables quick scanning, copying and opening of 
stored images by means of "album" of their miniatures, sorting according to the data in 
the head stored with each image etc. Program enables to make images with the 
resolution of 256x256 up to 4096x4096 of image elements (pixels). 

The researchers payed an extraordinary attention to the problem of necessary 
resolution (i.e. fineness of the raster step) and its fitting with the other requirements on 
the system. These requirements are rather controversial. As mentioned above, 
improvement of the signal/noise ratio is possible to reach by the duration of electron 
beam in each pixel, while in order to reach the higher resolution of optical microscope 
system, it is necessary to operate with "thinner" and unfortunately less intensive 
electron beam. Increasing of requirement on the duration in each pixel and 
simultaneously increasing of numbers of pixels in the given image leads to the 
disproportionate prolongation of time for one image - above the level, which is usually 
guaranteed by producers for stability of their devices and after all above the time 
acceptable for an operator. Thus, the probability is increased that during the long time of 
photo performing , a random failure of power supply or a shake etc. may happen, which 
is displayed by the image error. For example, in the size magnification of units of 
thousands and image division onto the 4096x4096 pixels, which is a requirement for 
microdeformation measurement with the above mentioned accuracy, at the microscopes 
with thermoemission electron gun is the time necessary for one pixel about 200 u.s, 
which at 4096x4096 pixels represents the time of image processing 60 minutes. During 
this time, defocusing of image may happen as well as its shifting by device drift or a 
change of brightness. When solving this problem, the procedure has been developed, 
which enables in the lower resolution raster regime (as a basic raster regime we consider 
resolution 512x512 pixels) to choose a window of the chosen size (using the multiple of 
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two), to place this window on the chosen object decisive for microdeformations 
evaluations, and then to scan the image in this window with the very fine raster 
scanning, which corresponds to 4096 image elements on the row throughout the whole 
image. Thus, scanned chosen parts of image are screened on the display with the full 
resolution, and can be used for evaluation of microdeformations by digital comparator. 

In conclusion, it is necessary to add that the proposed system requires the best quality 
computer hardware. The necessity is the high quality resolution monitor and a graphic 
card with the memory 4 MB, fixed disc with the high capacity, or further tools for 
recording of digitized images sets. 

4. The digital comparation of stereoimages - system COMPARAT 

To evaluate a stereoscopic pair of raster electron microscope images, the software 
system has been developed. The system enables an operation with images up to 
maximum dimension of 2048x2048 pixels. Both compared images are displayed 
simultaneously on the computer display in complementary colours. The high sensitivity 
of the human eye on the change of colour tone, which is near to neutral gray, is utilized. 
Changes in images are shown as garish colour changes. A user marks in an interactive 
way a certain amount of points corresponding each other in the both images. Thus, the 
relative shifts in these points are determined. The absolute shifts are possible to 
determine only after the precise matching of both compared images. Three following 
methods are possible to employ. 

1) The precise matching of compared images is guaranteed by the technical solution of 
experiment. In this case, relative shifts are considered as absolute ones. In practice, it is 
very difficult to find such a technical solution. 

2) During images scanning, it is guaranteed that both images have the same scale, i.e. 
magnification of the raster electron microscope is in both images identical. In this case, 
such a translation and rotation of the second of the images pair is searched in order that 
the sum of deviation quadrates in the users tagged points was minimal. Practically it is 
carried out in such a way that both images are placed into the complex numbers plane 
and linear transformation 

w = a.z. + b 

is searched, where a, b are complex constants and abs (a) = 1 is valid. After the linear 
transformation with required attributes has been found, the second of the images is 
transformed. Shifts between marked point in the first image and transformed second 
image are considered to be absolute. 

3) This method is used then, when it is not possible to guarantee that compared images 
have the same scale. In this case, such a translation, rotation and homotetie (a scale 
change) is searched in order that the sum of deviation quadrates in the points marked by 
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the user may be minimal. Analogously with the item 2), the linear transformation is 
searched in the complex plane with the difference that abs (a) need not to equal to 1. It is 
possible to employ this method only if we accept an assumption that the size of surfaces 
has not been changed by deformation. After the linear transformation with required 
attributes has been found, the second of the images is transformed. Shifts between 
marked points in the first image and transformed second image are considered to be 
absolute. 

After the absolute shifts have been found, the conform scan, determined by the absolute 
shifts in the set points is searched. This display is then employed for shifts matrix 
generation in the sufficiently dense grid of points. For images of 2048x2048 pixels, the 
grid with the step of 64 pixels is applied. This matrix of shifts is an output of the 
comparator. The system has also a possibility of graphic output in which the shifts 
vectors are plotted in the nodal points of a grid. To reach the maximum possible 
accuracy of printing on all possible types of printers, the system TEX has been chosen. 
The comparator generates automatically the source set for TEX, and therefore it is 
sufficient to translate this set using some of the TEX version (quite sufficient is the 
version Plain TEX) and print out. When employing laser printers 300 dpi or some better, 
the printing accuracy is comparable or better than an error caused by discretization of 
the image processed by the comparator. 

5.  Objects of microstrain analysis 

The deformations caused by machining were analysed. The machine technologies give 
many exemples about the influence of machining conditions on the resulting properties 
of produced parts. The next figure shows the deformation of the plate due to the 
grinding (Fig. 2). 
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Figure 2. The plate edge after grinding, 400 x magnification. The mechanically cut grid with the step of 10 
(tm can be seen on the left hand side. 
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1.   Abstract 

Explicit analytical expressions for families of 3-point, 4-point, 5-point, and 6-point (m- 
point) phase-measurement formulas are presented, which are exactly valid for 1,2, 3, 4, 
(m-2) different values of the phase-steps, applied in the sequence of intensity- 
measurements. These values are the "design phase-steps", which can be chosen in ac- 
cordance with the actual necessity. These formulas are equally suited for the temporal as 
well as for the spatial case. In the spatial case, the formulas can be used as components 
to design very compactly two dimensional convolution kernels, which lead to high spa- 
tial resolution and minimized sensitive to higher-order nüscalibration errors. 
We also present formulas with m points, which have (m-2) design phase-steps located 
symmetrical with respect to njl. These formulas give the lowest errors over the largest 
range. 
Finally we present formulas which are insensitive to linear phase-shifter calibration 
errors and at the same time to nonlinearity of the intensity measurement or non-cosine 
fringe profiles. 
The basic theory to derive these formulas and to design two dimensional convolution 
kernels was established by the author in 1986 and applied during the production of the 
ESO-NTT primary from 1986 to 1987 within the Carl Zeiss company [1]. It was pat- 
ented by Carl Zeiss [2], was called the "Direct Measuring Interferometry" (DMT) 
Method, and implemented in the Laser-Interferometer DIRECT 100, which has real- 
time wavefrönt measuring capability on a set of 480 x 480 measurement points [3]. The 
features of this method have been presented in different papers [4,5,6], the theory be- 
hind some of the formulas is given in greater detail in [7]. 

2.   Introduction 

It is the purpose of this paper, to present phase algorithms, which are robust and precise 
at the same time: now, before telling how, I want to say, why and give an idea for the 
benefits! 
Measurements are taken in real world conditions, that means, they are prone to harmful 
influences in many respects. As one cannot expect measurement results with mathe- 
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matical precision, it makes sense to search for procedures, which give the most precise 
result in a given situation. So it was the goal, to find methods and the appropriate for- 
mulas which are intrinsically "good conditioned", that means, if the error function is 
plotted against any of the error influences, one should encounter a nearly horizontal 
tangent around the working point. When you are lucky enough to establish such a pro- 
cedure, then - may be after some calibrations -, you will end up with a stable, robust 
and precise method, since precision can be kept high if errors can be kept small! Of 
course, this is not the only weapon against the undesirable influences of the real world 
on our measurement results. The others are to protect our measurement set-up as good 
as we can afford and to relay on the laws of statistics. Doing all together is the key for 
success. 
To explain a little bit what I mean with good condition, I want to give an example from 
the field of optics. Suppose you have to design some optics which are intended to be 
used with laser light. At first glance one would guess, that it would not be necessary to 
correct the optics for more than the working wavelength; but correcting them for a sec- 
ond wavelength will generate a horizontal tangent for the dependence of the focal length 
from color! Thus, also the tolerances for the index of refraction of the lens material can 
be lowered, the focal length of the lens will not act very much on changes of the index 
of refraction induced by temperature and so on. I would say, a bichromat is a "better 
conditioned creature" than a lens corrected for one wavelength only. In the case that 
within the experiment the color can change by a significant amount, it would even be 
preferable to design a trichromat (equal focal length for three colors), since the variation 
of the focal length between the three design wavelengths will be lowered again! 

Phase shifting is the most common technique for fringe evaluation in interferometry, 
fringe projection, moire" techniques and other fields, where „fringes" are involved. Two 
principles have established themselves and are widely used: 
• the temporal phase shift techniques have a high resolution in space but suffer from 

the fact, that several very precise phase steps have to be realized in the (time) se- 
quence of measurements, a demand which is difficult to fulfill in production envi- 
ronment; 

• the spatial phase shift technique, where the acquisition of only one fringe- 
measurement is necessary but where the spatial resolution might be not optimal:1 

In both cases it is difficult to precisely control the values of the phase steps. Especially 
for the second case, where the intrinsically given phase variations from one camera 
pixel to the next are used as the phase steps, there is a systematic deviation of the actual 
phase step from the nominal value by principle. So, one has to deal with a phase step 
error (linear or higher order, as described later), which varies across the fringe map and 
would lead to severe measurement artifacts (reported by others, see for example [9]), 
unless an algorithm is applied, which is highly tolerant for phase step deviations. 

Another source of errors with both, the temporal phase shift technique as well as the 
spatial phase shift technique, is the nonlinearity of the device, which measures the 

Our aim was therefore to develop a spatial phase shift technique, which is intrinsically robust against vibra- 
tions and has a uniform high spatial resolution, which is not the case with the Fourier-method [8], 
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fringe intensity (normally a CCD-camera). For instance, when the signal is clipped due 
to saturation, the intensity values transferred to the computer might not be well de- 
scribed by a function a+b cos(^). The same applies in the case of the fringe projection 
techniques, if a Ronchi ruling is used for projection. 

3.   Phase-shifting formulas with m points, which are valid for m-2 values of the 
phase-step 

3.1 THEORY 

The theory of deriving the following phase-shifting formulas is given in greater detail in 
[6]; the following outline is rather briefly. 
In two-beam interferometry, we end up with an equation, given below in different 
forms: 

I{<fi+S) = Bcos(<t>+S)+A (la) 
I(#+5) = cosS ■Bcos#~sm.ö-Bsm<ß+A = cosö-N-smö-Z+A (lb) 
/(<* + 5) = Re{Bexp(i^)exp(j<y)} + ^ = Re{3-expO*)}+^ (lc) 

In (la) A is the mean intensity, B is the modulation of the fringes2, ^ is the phase to be 
measured and 5 is the additional phase, which is added to the fringe map for phase 
shifting purposes. Whereas A, B and tj> depend on the spatial coordinates x,y of the cam- 
era, Sis constant over the whole interferogram and is changed in steps in order to gen- 
erate additional equations. For (lb) the cos-term is expanded and the products 5cos^ 
and ßsin^ are substituted by JV and Z respectively. For (lc) Bcos(fr-S) is substituted by 
the real part of the complex expression jBexp(i#)-exp(j'<y). We interpret Sexp(i^) to be 
a vector 2 in the complex plane, which has the two components iZ and AT in a Cartesian 
coordinate system and the magnitude B and phase ^ in a polar coordinate system: 

3 = 
Jz, 

■■Be» 
5 sind 

<* = arg(S) = arctan— = arctan^^-; B = -Jz*+Nl   (2) 
N Bco&(t> 

For phase-shifting, three intensity measurements //, h 1$ are taken at each pixel of the 
CCD-camera, with the extra phase-values of Si, <%, S3 applied to the interferogram: 

Ii=Bcos(0 + S1)+A=cosS1-N-smS1>Z+A 

J2 = 5cos(<* + <S2) +A = cos£2 • N-sin<?2 -Z + A    (3a) 

/, = J3cos(0 + SJ+A =cos£3-N-sinS, Z +A 

'cosS,   -sinS,   IYN)   fO 
cos«?,   -sin<J, Z 

u. 
(3b) 

^cosSi   -sinSi 

Provided that the determinant 
DETm = sin(£2 -S3) + sin(£3 -<?,) +sin(^ - SJ W 

2 
The quantity C=B/A is the „contrast" according to the definition of Michelson; in some of the literature C is 

called the „modulation". 
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of this linear system of equations is not zero, we get the solutions for N, Z and A: 
._    jsin£3-sin<?J       [sing, -sin<?3]       [sin^-sin^,] 

AT: 
Z>£TlB     " + /l      D£rm -'      DETm 

7       [cos£,-cos<?2]       [cos^-cos^]       [cos£2 -cosjj 
DJ5T ß£7;,. ß£7;, 

sin(<?2-<?3)       sin(£,-<y,)       sin^-fl,) 
1    DCT^ 2    DET,,, 3    D£T123 

(5a) 

(5b) 

(5c) 

For us, the equations (5a) end (5b) are the most interesting. Both vector-components, N 
and Z, which establish the vector 2 in the complex plane, is built up as a weighted sum 
of the three intensity measurements. It is important to notice, that the equations (5) are 
mathematical identities, provided that the phase constants & and the intensity measure- 
ments Ik are known with infinite precision. In this case, the computed quantities DET123, 
N, Z, A are exact; the same is true for the derived quantities B and <j>. If under real world 
conditions, the phase-values & deviate from the values which we suppose that they 
have, but instead have the values 5*, then the equations will not deliver the correct 
results for DETm, N, Z, A, B and <j>, but instead the more or less faulty values DETm\ 
N, Z , A', B' and f. So errors occur due to wrong values for the additional phase &, 
especially the phase-error Aft= </>-<!>. 

Until here, there was nothing really new! Now we will introduce the new and most 
important idea (see also [ ]): the only thing actually said about the values for St, fa S3 

is, that the determinant DETm should not be zero. If we would use another set & ö3, ö4, 
for the additional phase-values for instance, we should end up with essentially the same 
vector 2J! So if we use in total m different values for the additional phase &, performing 
m intensity measurements and collect them into (m-2) packages, each package contain- 
ing three successive measurements, we will be able to compute (m-2) vectors 2Ji to 
2J(„,_2), which all shell point in the same direction and all shell have equal magnitude. 
So, we are free to build a new "super-vector" 2, as a weighted vector-sum of those 
vectors, using the weighting-factors ai to a(m.2) 

Im 

M-       >Re 

Figure 1: Example of the construction of a 5-point formula: three vectors Si Sj 2Jj added with weighting 
factors ai=0.25, at=0.5, as^O.25, to set up the new vector 3, shown for a case, where the phase-steps AS 

deviate considerably from their nominal value 

3 = aßl+aß1 +... + a(_i;V,)=a1 
#, 
w + a. 

\iZ*J 
+-+<v*> 

^(.m-Dy 
(6) 
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We will show, that this new vector 2 will not only act as the individual components, 
but can have new characteristics concerning the phase-values &, for which the mathe- 
matical correct value for ^ results. Like an achromatic lens has the same focal length 
for more than one wavelength, the new vector 2? can have the correct argument ^ for 
more than one set of phase-values & or phase-steps d=5g-5^.iy Tailoring of the features 
of 3 is done by calculating and applying the appropriate weighting factors a.i to a^y. 
We do not have the space to explicitly demonstrate the necessary calculations here, but 
want to point out, that 25 can either be given ultimate robustness against false phase- 
steps (e.g. the range for 8 is very large) with reasonable errors A<j> in between the design 
phase steps, or can be made to create very small errors A</> over a smaller range for 8. 
For reasons of simplicity, we will restrict ourselves to equal phase-steps (linear phase- 
shift miscalibration). The basic phase-step, for which all the vectors 2Jk will give the 
exact value ^ for the argument is named 8. Additional phase-steps, for which only the 
super-vector has the correct argument $ are named ßh ß2,...,ß<m-3). 

3.2 THE GENERAL 3-POINT FORMULA 

We suppose, three measurements are taken with the phase-values increasing by 8 in 
each measurement, and having no additional phase for the central measurement (this is 
an important assumption!): 8i=-8; 52=0; 83=8. 

I1=Bcos(<f>-8)+A (7a) 

I^Bcosifi+A (7b) 
I}=Bcos(<fi+8)+A (7c) 

Then the general 3-point formula (which is only exact for the phase step value 8) is 
immediately derived from (5a) and (5b): 

Ar = -sin<y-/l+2sin£-/2-sin5-/3 (8a) 

Z = (l-cos<5)-/l + 0;/2-(l-cos5)-/J (8b) 
As we expect to get the values for Z and N by a convolution of one kernel for the nu- 
merator and one kernel for the denominator. In the following we will associate with 
these kernels the symbols zu z* ... , zm and nlt n2, ... , nm for a m-point formula The 
general form for the computation of <(> is then: 

'        ,    z.I.+z,L+.,. + zIm tan^ = -i-! 2-2— as. (9) 

Rather than to computed absolute values for B, it is enough in most cases, that a quan- 
tity proportional to B is achieved. Then it is possible to cancel out common factors in 
the denominator and the numerator of (9), in order to simplify the kernels further. We 
will do so for the rest of the paper. Then we can present the general form for the 3-point 
formula as: 

(10a) 2^ + sin^lj z2=0 z^-six^jj 

"l*s~00\l)       "*=+2«>sffj     «3=-cosf|l (10b) 
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3.3 GENERAL 4-POINT FORMULAS 

Due to the limited space, we will give only the results, without any derivation. With our 
theory, it is possible to derive 4-point formulas, which work exactly for two different 
values of the phase steps. We have computed two different general 4-point formulas 
with this feature; the first one has its design phase-steps at TC/2 and 8, the second one 

has its design phase-steps at Jand (K-8). Given are the convolution kernels for Z and N: 

Z:sinf*l-cosf*l    sinful + 3cosfl)   -sinf£\-3cosfl)    -Ji) + J>l 
2)     U;     U;      \2)      {2j      \2)       \2)     u 

N:-J*)-cj£)     J±VJ&)        sJiUoU)        -J&W 
2j      {2)        U;      UJ \2)      K2J \2)      U 

(ll) 
Z: 0 2sin<? -2sin<J 0 

N:       -1 1 1 -1 

3.4 GENERALS-POINT FORMULAS 

(12) 

In the case of 5-point formulas we present here 3 types, which are different with respect 
to the location, symmetry and multitude of the design phase-steps. It is possible to have 
3 zero-positions in the error function at maximum, but that is not guaranteed in any 
case. 
The following formula (13) is the most simple one, and is related to formula (12) for 4- 
points. It has a fixed design phase-step at ;r/2 and an other, which can be chosen, at 

ßl, where zero-positions of the error function are located. Then due to the symmetry of 

the formula, an additional zero position at ß2=K- ßl is generated. 

Z:    -1 + 2(l+sin#) 0 -2(l + sin#) +1 

AT:   -1 -2sin/?, +2(l + 2sin/?,) -2sin# -1 

In the next formula (14) the design phase steps are Sand ßt, which can be chosen ad-lib 
and where zero-positions for the error function are generated! Provided 25 + ßx < 2K , 

then there exists another zero-position of the error function at ß2 = 2n - 28 - ßx. 

zx = -23 = cos 8 sin ßl + (1 - cos ß{) sin 8 - sin /?, 
z1 =-z4=-2(2(l-cosy91)sin<y+sin/?lcosy?1)cos^ + 2cos^,((l-cos>S1)sin5 + sin^1) 

z3=0 

«, = n, = (1 - cos /?,)(1 + cos 8) - sin 8 sin ßl 

„2=/,4=2((cosy31)
2 + 2sin<?siny9l-l)cos5 + 2(l-cos/?1)siny91sin(5-2(l-(cosy5l)

2) 

/j3 = 2(cos #- 4sin 8 sin # +1 - 2(cos /?,)2) cos 8 + 2(2 cos ß-IXsinß sin 8-cosßl) + 2 
(14) 

The third formula has only one design phase-step 8, but the error function has a double 
zero position there. Provided that 8 < 2TT/3 , a third zero position is at /?, < 2K - 38. 
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Zj =-Z3 =-(l-C0S<?) 

z, = -z4 = 4(cos S)3 - 6(cos <S)2 ~ 2 cos 5 + 4 

z, = 0 
(15) 

w, = n3 =-sind 

n2 =n4 = -2sin<J(l-cosJ-2(cos<5')2) 

n3 = 2 sin <J(3 - 2 cos <5 - 4(cos S)J) 

3.5 GENERAL 6-POINT FORMULAS 

We present here only one 6-point formula, which has the two design phase-steps £and 
ßi, where zero positions are located. Then the formula generates two more zero- 
positions for the phase-steps ß1=7c-8 and ßi=2n-2ö-ßl. Since the formula is 
lengthy, we have used abbreviations. Care should be taken when the 4 zero-positions 
are selected: the formula is not valid for any two-fold zero-position! 

z, = -z, = -(eld - c3d)(c3b • sld - elb • sld - sib ■ c3d + sib • eld) 

z2 = -z4 = (eld - c5d)(c3b ■ sld -elb-sld- sib ■ c3d + sib ■ eld) 

z3 = -zt = c5b ■ s3d ■ c3d - sld • elb c5d + s5b ■ eld1 + s3b ■ eld ■ c3d + c5b ■ sld ■ eld 

+ s3b ■ c5d ■ eld + sld ■ cib • c5d + sld ■ elb ■ did + elb • s3d ■ eld + s5d ■ c3d + s5b ■ eld* 

- s3b ■ c5d ■ c3d - elb ■ s3d -c3d-2- s5b ■ eld -c3d + c3b -sSdcld- c5b sld- c3d 

- c5b s3d ■ eld -c3b- s5d ■ c3d - elb ■ s5d < eld - s3b eld1- c3b sld eld 

nt = n(=slb-cldsld-c3bslds3d-cU> + clb-cldt +slb- c3d s3d + c3b 

-c3b-cldz-slbc3dsld^slbclds3d + clb-slds3d 

«, = «j = elb - s5b ■ eld ■ sld - c5b + sib • eld ■ s5d + c5b ■ eld + sib ■ c5d • sld 

-s3bc5d-sld-slbcldsld-clbslds3d-slbc3ds5d + s5bc3dsld 

+ s3b-cldsld-clb-cld1+c5b-s3dsld 

n3=nt= c3b ■ sld ■ s3d + s5b ■ eld sld - c5b ■ eld1 - sib ■ c3d ■ s3d - c3b - sib -cld-sSd 

+ slbc3d-sld-slbc5d-sld + s3bc5dsld + slb-cld-s3d 

+ c5b + s\b -c3d-s5d- s5b ■ c3d ■ sld -s3b ■ eld- sld + c3b ■ eld1 - c5b ■ s3d ■ sld 
(16) 

1 3 5 
cld = cos(—Ö);      c3d = cos(—S);      c5d = cos(—ö); 

Jm JL £ 

sld = sm(-S); .    s3d = sin(-S);      s5d = sra(-S); 
2 2 2 (17) 

clb = cos(-ßJ;    c3b = cos(-ßs);    c5b = cos(-ßl); 
** 4* X 

s]b = sm(±-ßj;     s3b = sm(\^):     s5b = sm(^-ßl); 
** £ <L 
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3.6 m-POINT FORMULAS WITH A (m-2)-FOLD ZERO AT jtfl 

As a special case of the formulas presented so far, one can compute m-point formulas 
with a (m-2)-fold zero at zr/2 by a very simple rule: in this case, the weighting-factors 

oil, ct2 a(m.2), with which the vectors Si, St, ..., S(m.2) are multipüed before being 
added to establish the "super-vector" S are simply the binomial coefficients. Another 
alternative for computing the final values is by a very simple recursion, which we can 
not present here due to the limitation of space. In the following table, the coefficients 
for the convolution kernels are given up to a 16-point formula. Every first row shows 
the kernel for the numerator, every second the kernel for the denominator. 

 * :      •      i      i      ;             " I    3 1      I      0 -1 i 
  -1     I      2 •1 

■•••i ! \ j • 4 0 2 -2    |     0 
-1 1 1     ]    -1 

 ; > I- ■- 5 -1 4      I      0 -4 1 
-1 -2     !      6 -2 -1 

:■::).;■      6 -1 1 6 -6     I     -1 1 
0 -4 4 4     I     -4 0 

-•! l | ■ 7 -1 -4 15 0     I    -1S 4 1 

 i j H"" 1 -6 -5 20    |     -5 •6 1 
 !•■■  • I • •    > 0 •« S 20 -20 -6 6 0 

■      •                  '■■     ' 1 •1 -15 15 13 -15 -1 1 
i                                      ;   9 1 -a -14 58 0 -56    |     14    I     a -1 

1 6 -29 -14 70 -14    I    -28    I     6 1 
1                10 1 -1 -29 26 70 -70 -26 2a 1 -1 

0 s -6 -56 58 56 -58 -a a 0 
: ü 1 a -45 -48 210   |      0 -210 4a    )     45 -a -1 

-1 10 27 -120 -42    |    252 -42 -120   I    27 10 •1 
i 12 0 10 -10 -120 120 252 -252 -120   I   120 10 -10 0 

-1 1 45 -45 -210 210 210 -210   j    -45 45 1 -1 
:   13 •1 12 44 -220 -165 792 0 •792 165    I   220 -44 -12 1 

•1 ■10 66 110 -495 -132 924 -132 -495   I    110 68 -10 •1 
14 •1 1 66 -66 -495 495 924 -924 -495   |    495 66 -66 -1 1 

0 -12 12 220 -220 -792 792 792 -792   I   -220 220 12 -12 0 
I 15 -1 -12 91     |    20S -1.O01 -572 3.003 0 -3.X3 572   I  1.O01 -208 -91 12 1 

1 -14 -85   ]    364 429 -2.002 -429 3.432 -429 -2002      429 384 -85 -14 1 
;ie 0 -14 14 364 -364 -2.002 2002 3.432 -3.432 I -2.002 2002 364 -364 -14 14 0 

1 -1 -91 91 1.001 -1.001 -3.003 3.003 3.003 I -3.003 -1.001 1.001 91 -91 -1 1 

TABLE 1. Convolution kernels for m-point formulas with an (m-2) fold zero of the error function at it/2. 

3.7 SYMMETRICAL   m-POINT   FORMULAS   WITH   DISTRIBUTED   ZERO- 
POSITIONS 

The following formulas are extremely useful, since they produce the smallest errors 
over the largest region. They are constructed as a superposition of the formulas shown 
in Table 1. When for instance a new 9-point formula has to be designed, the convolution 
kernels for the numerator and the convolution kernels for the denominator are estab- 
lished by a weighted sum of the kernels from the 3-point, 5-point, 7-point and 9-point 
formulas of table 1. Depending on the weighting factors chosen, the new formula will 
have its zero-positions at different locations. But it is also possible to compute the nec- 
essary weighting factors which produce exactly the desired zero-positions. This proce- 
dure is best done numerically. I have written a program which delivers the final for- 
mula, when I type in the desired number of points and locations of the zero-positions 
(e.g. the design-phase-steps). As there is a nearly infinite multitude of different formu- 
las, which can be computed, I will only give some examples to demonstrate the superior 
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quality of these new kernels. Since the 9 coefficients have odd and even symmetry, we 
only give the first 5 of them. 

9-point formula with an oscillating error function; useful range 30° < 9 < 150°: 
design phase-steps: 31°, 41°, 61°, 90°, 119°, 139°, 149° 
P/V error smaller than 1.2 10"4 fringe-numbers3 over the range 30° < 0 < 150° 
Z;       1   -6.091433 622     -7.448 639 941    31.535 820 411     0 
N:       1     4.091433 622   -17.631507 185   -6.455 673 284   37.991493 694 

6*05' r\ /\ 
A 

*•«• I 

2»05- 
\    ■ 

*) sat so 100 120 \a 

-2»05- 

4*05- / 
■6*05 \j \J V 

Figure 2: Error function for the 9-point formula given above. The oscillating character is seen clearly, also the 
location of the design phase-steps, which are the zero-positions of the error function. The units of the abscissa 

are degrees, the units of the ordinate are fringe-fractions. 

9-point formula with an oscillating error function; useful range 50° < 0 < DC- 
design phase-steps: 51°, 58.4°, 72°, 90°, 108°, 121.6°, 129° 
P/V error smaller than 4 10* fringe-numbers over the range 50° < 0 < 130° 
Z:     1   -7.159858 824  -10.844 265 315     44.204 264 421     0, 
N:    1     5.159 858 824  -23.163 982 962   -10.196 016 144   54.400 280 564 

9-point formula with an oscillating error function; useful range 67.2° < 0 < 112.8°: 
design phase-steps: 67,7°, 72°, 80°, 90°, 100°, 108°, 112.3° 
P/V error smaller than 7 10* fringe-numbers over the range 67.2° < 0 < 112.8° 
Z:       1   -7.722 147 975  -12.910 753 065   51.920 419 395   0 

■N:      1     5.722147 975   -26.355 049 016-12.654 617 314   64.575 036 709 

8-point formula with an oscillating error function; useful range 71° < 9 < 109°: 
design phase-steps: 72°, 80°, 90°, 90°, 100°, 108° 
P/V error smaller than 4.4 10"7 fringe-numbers over the range 71° < 0 < 109° 
Z:       0 -5.871728 539 5.871728 539 19.236 319 724 
N:       1 -1 -14.489 888 400 14.489 888 400 

one fringe-period is equivalent to 2it or 360° respectively; in interferometry one fringe-period equals 1 X 
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4. Phase-shifting formulas which are insensitive to a nonlinear characteristic 
curve of the camera and at the same time to fringes, which deviate from the 
cos-profile. 

The formulas given so far can compensate linear "phase-shifter" calibration errors to an 
extend, which is far beyond measurement precision. This feature is absolutely neces- 
sary, when the formulas are used for the purpose of extracting the phase from a map of 
high density fringes (the DMI technique) and high precision is wanted We have also 
used the DMI kernels for extracting the phase out of fringe maps, which have been 
photocopied or published in papers and had been "hard-clipped", that means, they con- 
tain only black and white. The technique still works amazingly good, but it is clear, that 
you will end up with high frequency artifacts. In this case, the fringe intensity is no 
longer well described by equation (la), so the formulas cannot give error free results. 
The same applies in any case, where the fringe intensity deviate from (la), as in fringe 
projection technique, when a Ronchi ruling is projected or in the case of a nonlinear 
characteristic function for the device, with which the intensity is measured. 

In all this cases, the resulting intensity pattern can be described to any level of precision 
by a function, containing higher harmonics of the phase-function fa Making this a new 
starting point for the phase-shifting formulas, the problem is solved totally! 

I = A + B, cos(fa +S) + Bl cos(2 • (fa + a, + <?)) 

+ Bi cos(3 ■(^l+a!+ ö))+B< cos(4 • (ß + a, + ö))+... 

= A-sin(S)• Z, + cos(£)• N, -sin(2<J)• Z2 + cos(2<5)• Nt 

- sinQS) • Z3 + cos(35) • JV, - sin(4S) ■ Z4 + cos(4S) -N<-, 

(Z ' 

(18) 

fa = arctan 
fzS 
K*W 

fa = fa + a2 = arctan 

fa =fa+az —arctan 'O fa =fa +at = arctan Z, 

N. ij (19) 

-sin^,) cos(<?,) -sin(2<y,) cos^,) -sin(3<?,) cos(3<5,) -sin(45,) cos(4<y,)" 

-sin(<?,) cos(<y2) -sin(25;) cos(2<?;) -sin(3£2) cosQS,) -sin(4tf2) cos^) 

-sin(£,) cos(<?,) -sin(2S,) cos(2S,) -sin(3£,) cos(35,) -sin(4(5,) cos(4<y,) 

-sin(<J4) cos(£4) -sin(2£4) cos(2£4) -sin(3<yj cosQSJ -sin(4£4) cos(4<J4) 

-sin(5,) cos^S,) -sin(2^5) cos(2<?5) -sin^c?,) cosQS,) -sin(4£,) cos(45s) 

-sin(£.) cos(<J4) -sin(2<y,) cos(25,) -sin(3<S.) cos(3£4) -sin(45.) cos(4rf4) 

-sin(<?,) cos(57) -sin(2<?7) cos^,) -sm(3S,) cosQS,) -sin(4£,) cos(4<y7) 

-sin(<S.) cos(5.) -sin(2£,) cos(2<51) -sin(3£.) cos(3£.) -sin(4<?,) cos(4£.) 

-sin(5,) cos(£,) -smC2S,) cos(2<y9) -sin(3£,) cos(3<5,) -sin(4<?,) cos(4<?,)J 

(A) %) 
z, ', 
AT, A 
z, /« 

■ Nt = i, 
z, i. 
tf, A 
z. I. u> U.J 

(20) 
If the series expansion (18) for the fringe intensity is truncated after the fourth har- 
monic, as given in the example of equation (20), one can see, that at least 9 intensity 
measurements are necessary to solve the resulting linear system of equations. Normally 
one is only interested in the quantities Z; and Nlt from which the phase <|> can be com- 
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puted, but nevertheless it is necessary that the rank of the matrix is 9. In order to end up 
with robust formulas, the magnitude of the determinant of the matrix in (20) should be 
as big as possible. This is the case, if the phase-steps are properly chosen, for instance in 
our case of 9 intensity measurements phase-steps of 8 = 2JT/9 equally to (40°) would 
be a good value to be considered But you can compute the magnitude of the determi- 
nant as a function of 5 and chose the phase-steps with regard to that. 

Solving eq. (20) for Z; and Nt in a general (analytical) manner gives the general phase- 
shifting formula for the case of harmonics up to the 4th order, this is then the basis to 
compute the vector Hi as described in section 3.1. If one applies two additional phase- 
shifts, e.g. in total m=Il measurements in our case, it is possible to compute another 
vector 3i> which can be summed up with the first one in such a way, that the resultant 
vector 2 will have a zero position of its error function at a second phase-step value, e.g. 
the formula works with two different design phase-steps. In general, you need 
m=2w+2r-l intensity measurements to construct a formula which is valid for r differ- 
ent design phase-steps and take into consideration an intensity profile up to the w* har- 
monic of the phase <i 
I have written another program, with which the kernels for the numerator Z and the 
denominator N are computed, after typing in the design phase-steps and the harmonics 
to be taken into account There might be situations, where you know that the fringe 
profiles are symmetric, and therefore do not want that the odd-harmonics (3, 5,...) are 
considered. In this case, you can compute smaller kernels, reducing the effort. 

Before I give explicit examples, I want to point out an important special case. This is to 
consider only the second harmonic, which will cover the biggest part of detector non- 
linearity, see for example [10]. In this case, it is not necessary to establish a new theory, 
but simply construct a new odd-point kernel out of an even-point and an odd-point ker- 
nel, by interlacing the two kernels. If both known kernels have the same design phase- 
steps (the odd kernel will have one in addition, but this doesn't care), then the new ker- 
nel will have the same design phase steps, but divided by two! I will give an example to 
make things more clear. 

If you superimpose the last two kernels given in section 3.7, you end up with the fol- 
lowing (9+8)-point=17-point kernels (due to symmetry only the first 9 coefficients!): 

17-point formula with an oscillating error function; useful range 35.5° < 9 < 54.5°: 
design phase-steps: 36°, 40°, 45°, 50°, 54° 
P/V error smaller than ? fringe-numbers over the range 35.5° < 8 < 54.5° 
Z:       1        Occ   -7.722 147 975       -5.871728 539a -12.910 753 065 

5.871728 539a       51.920 419 395      19.236 319 724a       0 
N:      1        la     5.722147 975       -la -26.355 049 016 
-14.489 888 400a    -12.654 617 314      14.489 888 400a      64.575 036 709 

This formula will work for any value of a, for instance for a=l, but can be optimized, 
by applying to a an optimal value. A total set of error-functions can be computed with 
different values for a (having zero-positions as stated) and then the optimal one chosen 
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A very interesting new 9-point phase-step function is gained, if you combine the equa- 
tions (12) and (13) to new kernels: 

-1      Oa +2(l + sin2#)   +2asin2<5 0 -2asin2£ -2(1 +sin2/?,)      Oa    +1 
-1   -la    -2sin2^ +\a    +2(l + 2sin2^)     + la        -2sin2#        -la    -1 

(21) 
iz[A is here the naturally given design phase-step. Therefore S = ßl = ?r/4 will give 

very good results, but also S = /?, = 2;r/9 equal 40° could be considered for example. 
In this case there will be a second zero-position of the error function located 50°, due to 
the symmetry of the formula with respect to 45°. Again, the factor a is another degree 
of freedom in this formula, which can be used for optimization 

Now going back to the general case: as an example of the result of my program, I will 
now give a 17-point formula, which takes into account all higher harmonics till the 4* 
and at the same time has 5 design phase-steps 36°, 40°, 45°, 50°, 54°, the same values 
as in the example above! These are not totally optimal distributed, but for reasons of 
comparison I chose them Fig. 3 shows the error-function for the first harmonic <(>. 

1.2»-06 

18-06- 

8e-07- 

6e-07- 

4*07- 

. 2*07 

0 

-2*07- 

-4*07; 

-6*07- 

-8*07- 

-1*06 

-1.2*0G} 

/~\ 

'36 ' ' ' '38' ' ' '4Q.' ' ' '42' ' '   U   '/'   46      '   40      '   50, 62 

\J 

Figure 3: Error function for the 17-point formula given below. The units of the abscissa are degrees, the units 
of the ordinate are fringe-fractions. 

The coefficients for the kernels are: 

Z:       1. .277 370 -4.482 025 1.060 792 -14.159 974 
11.724 757 10.599 099        10.941335 0 

N:       .226 979     1.209 593 3.281505 -.540 325 -7.540 562 
-10.123 640 -3.281505 9.454 373 14.627 167 
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S.   Miscellaneous 

There are some things left, which are important in constructing robust procedures, 
which I can not consider in detail, but rather would mention it here. 

Due to limited space, I can not describe, how to construct two-dimensional convolution 
kernels, which are based on the new formulas. What I want to do is to give some hints 
with respect to phase-sifting in time as well as in space. 

It is very useful to study the error function L</> = A$($, 0) of the formulas as a function 

of the two variables ^ and 0, where ^ is the phase to be measured and 0 is the phase- 
step value actual applied. As was already pointed out by Schwider et al this is a peri- 
odic function in tfi The extreme values of this function are normally found around 
a/4±n-/r/2. Our sketches of the error functions are traces computed for values 

^ = a/4. Due to the periodic character of the error function with a main period of 24, 
one can chancel out residual phase-errors by accumulating phase-results from measure- 
ments, with a randomly distributed starting phase. Alternatively One can accumulate 
phase-results and applying a continuously changing starting phase, as is done in the 
interferometer DIRECT 100 with a measurement frequency of 25 Hz. 

My new idea is, to add an odd number p=(2n+l) of measurements («=/ or 2 or 3 all 
would work perfectly), and changing the starting phase in steps by y/ - n • 2njp. This 
is a much better procedure than the "Averaging 3&3" technique, which is reported fre- 
quently and was first introduced by Schwider et al [11] and by Koliopoulos [12]. The 
reason is, that the error function contains mainly terms with an even symmetry with <)>, 
which are cancelled out completely by this procedure. 

The next point to be considered are higher order phase-calibration errors. I have not 
dealt with that analytically till now, but numerical simulations showed me, that the zero- 
positions of the error-functions of my formulas are shifted a little bit away from the 
design phase-steps, when I apply a higher order calibration error to the phase-steps. 
Therefore one can conclude, that the robustness of the formulas prevent them for going 
obsolete, and that higher orders can be taken into account by the design of the formulas, 
if their values are known a priori. 

The last point concerns the number of fringes, which one introduces in an interfero- 
gram. It is clear, that with higher numbers of fringes, the test set up is less "common 
path" and therefore more prone to errors, which are not cancelled out to the same de- 
gree, as when the fringes are nulled. This is for the optical side; now we want to con- 
sider the phase-measurement side: assuming that you have a phase-measurement error 
due to any reason, this error by principle will be located between 0 and 2%. In other 
words, only fringe fractions are subject to errors, not the integer fringe numbers (it is 
impossible, that 2n is not one period!). Therefore the more fringes you introduce, the 
higher is the spatial frequency of the errors. These errors are filtered out very easily by 
any low-pass filtering procedure, as for instance applying a Zernike fit to the phase- 
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map. Since the most pronounced remaining errors have a period of it which equals half 
a fringe period, they are nearly completely washed out by averaging 2x2 pixels, if the 
carrier frequency is chosen to have 4 pixels at one fringe period (-> phase-shift of 90°). 
With the DMI method, a reproducibility of better than 0.05nm r.ms. is reached by aver- 
aging during one minute, but without any averaging in space! 
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Abstract 

We show a non destructive experimental method which gives the isochromatics and 
isostatics patterns of slice optically isolated in a three dimensional photoelastic model. 
We used a non destructive method of optical slicing developed in our laboratory. In this 
method, the photoelastic model is optically sliced by two plane laser beams. The analyze 
of the scattered light gives fringes equivalent to the ones obtained in a plane polariscope 
(isochromatic and isoclinic fringes). In order to separate the isochromatic and the 
isoclinic fringes, we recorded several images for different polarization orientations and 
we separated the isoclinic and isochromatic fringes using the Fourier transform. Then 
the isostatics pattern is plotted. 

We show a test of a punctual loading on the top of a prismatic specimen and the 
possibilities of our method in an industrial case of a model realized by stereolithography 
technique. 

1. Introduction 

Photoelasticity coupled with the stress frozen technique is still used by industrialists. 
Usually the three dimensional specimens are sliced by a mechanical process to obtain 
two dimensional models. The slices can be analyzed in a plane or a circular polariscope. 
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Let us remind that into a plane polariscope, a two dimensional analysis of a beam 
allows us to visualize two fringes patterns. The direction of principal stresses is 
obtained from isoclinic fringes, their difference is given by isochromatic fringes. 

Different two dimensional automated photoelastic fringe analysis has been recently 
investigated, there are techniques based on the use of circular polariscope (Voloshin, A., 
et al. 1983) (Patterson, E.A., et al. 1991) or plane polariscope (Dupre\ J.C., et al. 1993) 
(Mueller, S.A., et al. 1993) (Morimoto, Y., et al. 1994). Other methods use two 
(Umezaki, E., et al. 1989) or three (Kihara, T., 1994) wavelengths. The mechanical 
slicing is a destructive procedure, can disturb the measurement and for different planes 
takes a lot of time. Furthermore it requires the molding of several models for a general 
study. Three dimensional methods have been developed (Srinath, L.S., et al. 1988) 
(Ezaki, K., et al. 1996) (Zenina, A., et al. 1997) (Zenina, A., et al. 1998). 

In this paper an another experimental solution is proposed, we used a non-destructive 
method of optical slicing of three dimensional photoelastic model developed in our 
laboratory (Dupre, J.C., et al. 1997) (Plouzennec, N., et al. 1998). In this method we 
obtained a fringe pattern like in a light plane polariscope. We could not obtain directly a 
fringe pattern corresponding to a circular polariscope, then we chose a procedure based 
on a Fourier transform (Morimoto, Y., et al. 1994) witch only used a plane polariscope 
configuration without modification of the angle between polarizer and analyzer. 

To show the possibilities of this method, we present a test of a punctual loading on 
the top of a prismatic specimen and an industrial case of a model realized by 
stereolithography technique. 

2. Principle of the optical slicing experimental method 

The basic idea is to use the properties of polarization of the scattered light (Rayleigh's 
law). If one observes along the z vector, perpendicular to the direction of the 
propagated light beam X, the scattered light is polarized rectilinearly along Z A X. The 
principle of the method is to isolate a slice of the studied photoelastic model between 
two parallel plane laser beams (figure 1) (Plouzennec, N., et al. 1998) (Dupre\ J.C., et al. 
1997) (Dupre, J.C., et al. 1996). In the direction perpendicular to the plane of the two 
illuminated sections, we observe a speckle pattern due to the interference of the light 
beams of each section. Their possibilities of interference depend on the birefringence of 
the isolated slice. 

The correlation factor y of the two speckle fields is given by : 

Y2 = l-sin22asin2-^ (1) 
2 

a is the angle of one of the principal stresses, the isochromatic parameter q> is expressed 
by: 

2nCe,  ,     ,,, 
<p = -^—(cr'-a") (2) 

Where e is the thickness of the specimen, C presents the photoelastic constant, X is 
the wavelength of the light used and (a' - a") is the secondary principal stress difference 
of the specimen. 
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Expression (1) is similar to the relationship of the light intensity obtained in a plane 
polariscope. Thus, the analyze of the scattered light gives fringes equivalent to the ones 
obtained in a plane polariscope (isochromatic and isoclinic fringes). 

Tu-L13 
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Figure 1: Experimental set-up 

3. Separation of isochromatic and isoclinic using Fourier transform 

As we obtained fringes pattern from a plane polariscope, we chose a procedure based on 
the Fourier transform (Morimoto, Y., et al. 1994) witch only used a plane polariscope 
configuration without variation of the angle between analyzer and polarizer. 

3.1. PRINCIPLE 

If we turn the polarizer and the analyzer direction with an angle 8, expression (1) 
becomes : 

Y2(0) = l-sin22(a-e)sin   ^ 
2 

Y2(e) = [l-y(l-cos4(a-0))] 

(3) 

(4) 

In each point of the image A is constant (A = sin   —). 

The signal (4) is a periodic function with a period T = — = —, thus it is expressed 

in the Fourier series with respect to 8 : 
-J-OÖ 

Y2(8)= ]Tcne jnw0e 
(5) 
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-t-i/z 

Cn=^  J  Y2(e)e-Jnw»9de (6) 
-1/2 

With: 
2K      2K 

u      T     K/2 

The Fourier transform of equation (5) is : 

r(»)= fY2(e)e_j(oede 
—oc 

r(w)= £cn JV^'V^de 
n=—°°     -oo 

Using the flowing formulations (Brigham, O.E., 1974) : 

-f-oo 

8((o)= Jej2™ede 
—CO 

8(0) - a) = Jej2Tt(c°-a)ede 

We obtained : 

r((0)= ^2KCn8(co-nco0) (7) 

With 8 is the Dirac delta function, 0) is the frequency and j is the imaginary unit. 
The signal (7) indicates the discrete frequency spectrum which appears only on the 

frequency components nco0 (n = ±0, n = ±1, n = ±2, ...). 

n = 0: 

From equation (6), we obtained : 

+T/2 

2nC0 = — 

-1/2 

JV(6)d9 
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+7C/4 

2TCC0=4  f [1-—(l-cos4(a-9))]d8 
* 2 2 

-71/4 

2TCC0 = 2TC - TCA = 2TC(1 ) (8) 

Equation (8) indicates that the isoclinics are eliminated. The image of 2TCCQ shows 
the isochromatic fringes in the whole field of the specimen. 

n = +l 
From equation (6), we obtained : 

fT/2 
27rC+l = "Y |Y2(6)e 

-T/2 

-jco0ede 

+TC/4 

2TCC+1=4  J   [1 -fa- cos4(a - 9))]e" -jcooöd0 

-TC/4 

By using : cos4(a - 0) = - (e
j4(a_e) + e-J4(a"e)), we obtained : 

+7C/4 +TC/4 +TC/4 +TC/4 

27tC+1=4 Je-j49d0-2A Je-j49de + A[ J  e-
j4ad0 +  Jej4(ot-2e)d0] 

-7C/4 -TC/4 -TC/4 -Tt/4 

„  ~ n      -i4a     JX 
2TCC+1=— Ae =— A[cos4a- jsin4a] (9) 

Finally , we obtained the isoclinic parameter a by calculating the arctangent of the 
ratio of the imaginary and real parts of 2TCC+I : 

1 -3m(2icC+1), a = -a tan [—— ±^-] (10) 
4 9?e(27cC+1) 

v    ; 

The method consist in recording several images for different orientations and in 
calculating the Fourier transform of the correlation factor of each pixel. Then the 
isoclinics and isochromatic fringes can be separated using this technique and the 
isostatics pattern can be plotted. 

3.2. EXPERIMENTAL PROCEDURE 

Experimentally we have to analyze images corresponding to different plane polariscope 
orientations. Due to refraction and reflection phenomenon's, the models are immersed in 
a tank of index liquid. The first solution is to turn the two laser beams but it imposes to 
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have a special tank shape because The edge of the tank must be perpendicular to the 
incident beams. The second solution is to turn the specimen of -TC/4 to Tt/4. Then we 
record several images for different orientations of the model. Numerical rotation is 
applied for each image in order to obtain the correct position of the model, as we have 
turned the laser beams. This procedure is more simple but the common area is a circle so 
we loose a part of the image. 

By calculating the Fourier transform at each point of these images, the isochromatic 
pattern is obtained from the correlation factor data for the frequency co = 0. The 
Isoclinic image is obtained for co= ± cuj (figure.2). 

o 

Real part co = 0 
(Isochromatics) 

Phase co = ccb 
(Isoclinic) 

Figure 2 : Recorded images obtained by changing the angle of polarizer and analyzer 
and a part of the Fourier spectrum given the isoclinic and the isochromatic parameters 

4. Experimental results 

A three dimensional photoelastic block model adopted in this study is made of an 
Araldite epoxy-resin. The model is loaded by a concentrated force (figure 1). 

The model is placed in a tank of index liquid and illuminate perpendicularly to the 
observation direction. Several images are recorded for different polarization orientations 
i.e. for different rotation of the specimen in the interval [-7i/4 , Tt/4] by a CCD camera 
with 1024 grey levels of brightness. The minimal number of images recorded is eight 
(figure 2), but for a best contrast it is necessary to record sixteen images. 

When the isoclinic a is determined for the whole Field, the isostatics can be plotted 
to obtain a better visualization of the principal stress direction (figure 3). 

We show in figure 4 an application of our method in an industrial case of a model 
realized by stereolithography technique. We show a zoom in the particular zone for 
more details in the specimen. 
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(slice : 1.5 mm) (slice : 4 mm) 
Figure 3 : Isostatics and isochromatics patterns for two thicknesses of slice 

WSm 

^^^^^^^^^^^^ 

5^^fr^^^^^^^^Us,--^Y""'' '•-1 

Figure 4 : Isostatics and isochromatic patterns for a model, provided by PSA, realized 
by stereolithography technique (slice : 2.5 mm). 

5. Conclusion 

We have developed a non destructive experimental technique for the study of the 
stresses field in a three dimensional photoelastic specimen. This method allows us to 
separate the isochromatic and the isoclinic fringes and to plot the isostatics pattern. 

This method is based on a simple experimental set up with few manipulations and 
spend a short time. 

The numerical procedure associated with the optical slicing method can be used, in 
industry, for fast investigation for three dimensional specimens realized by molding or 
stereolithography. 
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Abstract 

Moir6 interferometry with a low density grating was used to evaluate the suitability of 
the T*e integral and CTOA as ductile fracture parameters for characterizing low cycle 
fatigue and dynamic crack growth in thin aluminum fracture specimens. Phase shifting 
Moir€ interferometry with a high density grating was also used to determine the energy 
dissipation mechanism in brittle alumina ceramics. 

1.1    Introduction 

The gradual acceptance of linear elastic fracture mechanics (LEFM) for assessing failure 
in the 1960's generated a need to estimate the stress intensity factor (SIF) of a crack in a 
complex structure and loading. Prior to the dominant usage of finite element (FE) 
analysis, one of the more commonly used procedure for SIF determination in a 
laboratory setting was the two- and three-dimensional photoelasticity. While two- 
dimensional photoelasticity has, for all practical purpose, being replaced by FE 
analysis, three dimensional photoelasticity is still in use today [1]. Other popular 
optical techniques of the time include interferometry [2] and caustics [3, 4] with the 
whole field version of the latter being referred to as the coherent gradient sensor [3]. As 
research in LEFM evolved beyond the mere compilation of JIF's for different boundary 
value problems, real structural materials had to be used in place of photoelastic material 
in order to model their fracture responses. Thus optical tech liques, such as caustics and 
Moird techniques came into use for studying the dynamic fracture, elastic-plastic fracture 
and time-dependent fracture responses of steel, aluminum, cxamics and concrete, etc. 



One of the earlier application of geometric Moird in experimental fracture 
mechanics is a dynamic ductile fracture study [5, 6] using a single frame, ultra-high 
speed photography. In this study, the transient strain fields in fracturing magnesium, 
7075-T6 and 7178-T6 aluminum alloy, center notch (CN) specimens were shown to 
vary with a strain singularity between 0.4 - 0.6 while the corresponding static strain had 
a strain singularity of about 0.6 - 0.8. These results suggested that a propagating 
ductile crack can be modeled, as a first approximation, by dynamic LEFM and thus 
justified the earlier and extensive LEFM approach to dynamic fracture. This pseudo- 
elastic response was associated with a relatively high crack velocity of 10 to 20 percent 
of the Rayleigh wave velocity generated by an overdriven crack at a blunt starter notch. 
In contrast, most dynamic ductile fracture phenomena are associated with lower crack 
velocities of 5 to 10 percent of the Rayleigh wave velocity. Reference [7] provides an 
up to date summary of some of the recent usage of geometric Moire' in elastic-plastic 
fracture mechanics (EPFM). 

The lack of strain sensitivity in the earlier Moir6 analysis was removed by the 
introduction of Moire" interferometry in the late 70's [8]. The specialized optical setups 
used and selected results obtained since that time are summarized in [9]. In the 
following, some results obtained by the author and his colleagues using Moire" 
interferometry over the past ten years are presented. 

2. Moir£ Interferometry 

As mentioned previously, many of the popular Moire interferometry setups are described 
in [9] and further theoretical and experimental details can be found in [10]. In this 
paper, only the low-spatial-frequency, steep grating that was developed for elastic-plastic 
analysis of the crack tip region in ductile material, and a phase-shifting Moire 
interferomtry of high sensitivity for fracture process zone analysis of structural ceramics 
are discussed. 

2.1. LOW-SPATIAL-FREQUENCY STEEP GRATING 

The low-spatial-steep grating consists of an ultra-thick, 5-10 urn thick, semi-transparent 
film which is etched with a deep grating on a mirrored surface of the specimen [11]. In 
order to enhance the diffraction efficiency of the grating, the specimen surface must be 
polished to a mirror grade. The film combines the function of a reference grating and a 
display layer. When the two coherent beams of A(x) and B(x) shown in Figure 1 
intersect on the specimen surface, the diffraction beams, A(i+m, j) and B(i-m, j), 
interfere and are projected onto the recording surface. Unlike the standard Moire" 
interferometric fringes, this interference pattern can be observed clearly from any 
direction. For example, a grating of f=40 lines/mm in an argon laser field will project i 
= j = (2m)2 = (2:48)2 = 9216 visible diffracted beams in all directions. All but the 
minus or plus first order of the incident A(x) and B(x) beams, respectively are blocked 



by the steep grating. Good contrast of the displacement patterns is obtained even when 
the specimen surface is warped due to the large out-of-plane deformation of the crack tip 
plastic zone. For the low-spatial-frequency of 40 lines/mm used in this study, an 
incidence angle between the z-axis and the two coherent beams of 1.176° was required. 
Since the grating spatial frequency of 40 lines/mm requires an incidence angle between 
the z-axis and the two coherent beams of 1.176°, a special compact Moirg interferometer 
was built. 

Tu - GL5 
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B(i-mj) 

A(i+m,j) 

Figure I. Diffraction angles of a steep grating. 

2.2. PHASE SHIFTING MOIRE INTERFEROMETRY 

The specimen grating for Moire' interferometry was affixed by the standard replica 
technique [10] where the master grating of 1200 lines/mm together with a highly 
reflective aluminum coating was transferred to a thin half-cured epoxy film coated on the 
fracture specimen. The specimen grating was then placed in a standard two-beam, 
phase-shifting Moir6 interferometer, as shown in Figure 2, with an appropriate oblique 
incident illumination that yielded reflected diffraction of the order +/- 1 normal to the 
grating surface. In this study, only the v-displacement, which is perpendicular to the 
crack, was recorded. This optical setup effectively doubled the frequency of the 
specimen grating to 2400 line/mm. The two oblique beams also generated an 
interference fringe pattern., which becomes the reference grating, of 2400 lines/mm in 
front of the specimen grating. Phase shifting was accomplished by a piezoelectric 
transducer which translatsd one of the oblique beams and effectively shifted the spatial 



location of the Moir6 reference grating. Four steps in the total PZT displacement 
generated shifts of 90°, 180°, 270° and 360° phase differences. When the specimen 
grating was distorted by the deformation in the specimen, the distorted diffraction of +/- 
1 order interfered with the undistorted reference grating and generated the Moire' fringe 
pattern in the space in front of the specimen. A CCD camera was focused on this 
Moir6 fringe pattern, which was recorded as a wrapped phase map, in space. A two 
dimension spatial unwrapping software provided the unwrapped phase distribution which 
is proportional to the displacement of interest. The estimated accuracy of the entire 
phase shifting Moir6 interferometry procedure is X/20 or 0.03 |jm. 

PZT pushe 
specimen grating 
reference grating 

~- He-Ne Laser 

Grating Frequency = 1200 lines/ mm 

Figure 2. Phase shifting Moiri interferometry setup. 

3.    Ductile Fracture Parameters 

3.1. T*e INTEGRAL 

For a stably growing crack, Brust et. al. [12] showed that the T*e integral, which is 
based on the incremental theory of plasticity, reaches a steady state value during stable 
crack growth and could be an effective stable crack growth parameter. In this integral, 
the unloading effect is accounted by stretching the integration contour with the 
extending crack tip. For an integration contour close to the crack tip, T*e represents the 
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energy inflow to the wake as well as to the frontal crack tip region [13]. In contrast, 
the J integral represents the energy inflow to a closed contour that moves with the crack 
tip. Like the J, the T*e is a path dependent integral in the presence of large scale 
yielding and unloading. Thus it must be evaluated near the crack tip if it is to be 
considered a crack tip parameter. This near-field T*c, is defined as 

where q are the surface tractions on the contour re, W is the strain energy density and nt 

is the first component of the normal to the curve. re is an arbitrary small contour 
immediately surrounding the crack tip and more importantly it elongates together with 
crack extension. T*e, as defined by Equation (1), is identical in form to the J integral 
and therefore T*e coincides with J where the deformation theory of plasticity prevails. 

In terms of the incremental theory of plasticity, T*e integral at the end of the Nth 
load steps is the sum of AT*e which is the incremental change of T*e over a load step. 
The current T*e is thus dependent on the prior loading history, a property that is 
essential for elastic-plastic analysis under crack growth. Although such incremental 
analysis can be routinely conducted by finite element (FE) analysis, it is not practical in 
experimental analysis as the cumulative experimental errors per load step will 
eventually swamp the sought data. Fortunately Pyo et al [14] have shown, through 
numerical experiments, that the total T*e integral computed directly by using the 
stresses and strains based on the incremental theory of plasticity, was for all practical 
purpose, equal to the summed AT*e. Thus Equation (1) can be used for crack growth 
study without the cumbersome incremental procedure provided the states of stress and 
strain are based on the incremental theory of plasticity. 

Another series of numerical experiments showed that the numerical integration 
process along the trailing contour behind the crack tip can be ignored if the contour is 
very close to the traction free crack, i.e. for a very small e [13]. The magnitude of e is 
governed by a characteristic dimension which assures that a plane stress state exists 
along the integration contour of TE. This distance, e, is equated to the plate thickness 
after [15]2. For a plane strain state, this characteristic distance could be several times 
the crack tip radius. 

3.2.    CTOA CRITERION. 

The critical crack opening displacement (CTOA) criterion assumes that stable crack 
growth occurs when an angle made by a point on the upper surface of a crack surface, 
the crack tip, and a point on the lower surface reaches a critical angle. For convenience, 

2 The three-dimensional elastic-plastic finite element analysis of a fiat crack in a plate by Narashimhan and 
Rosalas (1990) showed that the plane stress state prevailed at one half of the plate thickness from the crack 
tip. Since a 100 percent shear lip is the norm in ductile fracture, the minimum distance, e, was 
conservatively picked as the plate thickness. 



a point 1 mm behind the crack tip has been used. Extensive experimental results from 
thin aluminum fracture specimens have shown that after an initial transient period, the 
CTOA remains constant throughout Mode I stable crack growth [16, 17]. Moreover, a 
two-dimension, elastic-plastic FE simulation of stable crack growth based on the CTOA 
criterion correctly predicted the load-crack opening displacement (COD) relations and the 
Mode I crack extension histories of fracture specimens. 

4.    Low Cycle Fatigue 

The objective of this study was to explore experimentally the feasibility of using T*e as 
a cyclic crack growth criterion 

4.1. EXPERIMENT ANALYSIS 

The experimental procedure consisted of measuring the two orthogonal displacement 
fields surrounding a crack extending under low-cycle fatigue in an aluminum 2024-T3 
central notched (CN) specimen. Moir6 interferometry with a coarse cross diffraction 
grating of 40 lines/mm was used due to the presence of large scale yielding in the 
specimen. The stresses corresponding to the total strains were then computed using the 
equivalent stress-strain relation and the measured uniaxial stress-strain data of the 2024- 
T3 sheet. This use of the deformation theory of plasticity to compute stresses did not 
account for the unloading process, which occured in the trailing wake of the extending 
crack. By restricting the integration contour very close to and along the extending 
crack, [13] showed that the contour integration trailing the crack tip can be neglected by 
virtue of the closeness of the integration path, T , to the traction free crack surface. This 
partial contour integration, which was evaluated in the very vicinity of the moving 
crack tip not only simplifies the integration process but also eliminated the undesirable 
effects of the deformation theory of plasticity that was used to compute the stresses 
from the strains derived from the measured displacements. 

4.2. NUMERICAL ANALYSIS 

A finite element (FE) analysis based on the incremental theory of plasticity using the 
measured equivalent stress-strain relation was conducted for comparison purpose. Plane 
stress, FE model of a segment of the CN specimens was driven in its generation mode 
by the measured, time varying displacements and instantaneous crack length. The T*E 

integral along the entire elongated contour surrounding the cyclically growing crack of 
the fracture specimens was computed. Since the FE analysis provided stresses which 
accounted for the unloading effect in the trailing wake of the extending crack tip, the 
entire contour with a domain integral [18] was used for the T*e evaluation in order to 
mask the numerical errors in the FE data surrounding the crack tip. To recapitulate, the 
T*  evaluation procedures for the Moire" and FE studies differ in that the former used 



only the frontal segment of a near-field contour, re, while the latter involved an 
equivalent domain integral over much of the crack length. 

4.3. RESULTS 

Figure 3 shows that the the T*e values, which was determined experimentally and by 
FE analyses, for e = 2.0 mm are in good agreement with the exception of the unloaded 
T*e values. This discrepancy is due to the use of deformation theory of plasticity in 
computing the T*e integral at the unloading point. Despite the differences in the load 
versus loadline displacement curves for the three specimens, all three loading and 
reloading T*e curves nearly coincide and suggests that crack growth under cyclic loading 
of thin aluminum fracture specimens could be characterized by a master T*e versus 
crack extension curve for a given TB. 

FE.E=2.0mm I 
Exp. Load ' 
Exp. Unload 
Exp. Reload 

1 
■ 

_1_ _1_ _1_ 
0.0       0.5       1.0       1.5       2.0       2.5       3.0       3.5       4.0 

CracK Extension (mm) 

4.5 

Figure 3. Experimental and FE T*, for cyclically loaded 2024 -T 3 CN specimens. 

Figure 4 shows the experimental and FE CTOA variations with cyclic crack 
growth. The large differences in the experimental and FE generated CTOA at unloading 
showed that commercial FE code did not model the loading, unloading and reloading 
process. Likewise difference between the measured and FE determined T*e at unloading, 
followed the results of Brust et. al. [12] thus suggesting a possible fundamental 
modeling error in the commercial computer code used in this study. 
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5.0  Dynamic Ductile Fracture 



Dynamic Moir6 interferometry was used in search of a dynamic fracture parameter that 
control rapid fracture of a somewhat ductile material. 

o 

a 
< o 

  FE 
•     Exp. Load 
■     Exp. Unload 
A    Exp. Reload 

4 
■ 

■ I    '    '    i    I    I    I    I     I    I    I    I    I    I    i    I    i    ■    ,    ,    I    ,    ,    ,    ,    I    ,    ,    |    ,  • 

0-0        0-5        1.0        1.5        Z0        2.5        3.0        3.5        4.0 
Crack Extension (mm) 

Figure 4. Experimental andFE CTOAfor cyclically loaded 2024-T3 CN specimens. 

5.1. EXPERIMENTAL ANALYSIS 

Dynamic Moir6 interferometry was used to determine the transient displacement fields 
perpendicular and parallel to the running crack in 7075-T6 aluminum alloy, SEN 
specimen, 1.6 mm thick, that was either fatigue precracked or blunt notched for low and 
high crack velocity tests, respectively. Four frames of the Moirg fringe patterns 
corresponding to either the vertical or horizontal displacements were recorded by an 
IMACON 790 camera. This limited number of frames and the fixed framing rate, i.e., 
100,000 frames per second, required multiple and separate u- and v-displacement 
recordings of identically loaded SEN specimens at different delay timings in order to 
capture the entire fracture event that lasted about 1.2 milliseconds. Despite all efforts to 
generate reproducible tests, no two dynamic fracture tests were identical and thus the 
final composite fracture event was constructed with due consideration of the load-time 
histories and the varying crack opening profiles of each fracture test. The compiled 
displacement records was then used to compute the T*e integral according to the 
procedure described in Section 3.1. 

5.2.  RESULTS 

Figure 5 shows typical dynamic Moird fringe patterns associated with the propagating 
crack. Crack velocities of about 35 m/s and 300 m/s were observed in the fatigue- 
precracked and blunt notched specimens, respectively. Figure 6 shows the variations of 



CTOA with crack extension.  The data identified as the first series is from Lee et. al. 
[18] using fatigue precracked specimens and the second series refers to the data on the 
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5 mm 
u-displacement field , v-displacement field 

Figure 5. Dynamic Moiri patterns of a fracturing 7075-T6 SEN specimen. 
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Figure 6. CTOA variations in a fracturing 7075-76 SEN specimen. 

blunt notched specimens. Figure 7 shows the T*. versus crack velocity relations of 
7075-T6 and 2024-T3 SEN specimens. The 2024-T3 results [18] are also shown for 
comparison. For the 7075-T6 specimens, T*e increased with increasing crack velocity 



and eventually leveled off at a terminal velocity of about 300 m/s. In contrast, the crack 
velocity in the fatigued precracked 2024-T3 specimens did not reached a terminal 
velocity and arrested at a T*e higher than its initiation value. 
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Figure 7. T*, versus crack velocity relation of a fracturing 7075-T6 SEN specimen. 

The dynamic strain energy release rate, GID, with respect to crack velocity of 
7075-T6, like other somewhat brittle materials, was expected to exhibit the 
characteristic gamma-shaped curve. To test this postulate, the crack tip opening 
displacement (CTOD) at a crack tip distance, r = 1 mm, was used to compute K^, and 
the strain energy release rate, GlD, based on LEFM for the fatigue-precracked (first series) 
and the machine-notched (second series) 7075-T6 SEN specimens. The same procedure 
was used to compute G^ for the blunt-notched 7075-T6 SEN specimens of [6] and the 
characteristic gamma shaped G^ versus crack velocity relation was obtained. 

5.3. DISCUSSIONS 

Both the T*e and CTOA are being considered for stable crack growth criteria and 
likewise possibilities exist as dynamic ductile fracture criteria. CTOA, by definition, is 
a local crack tip parameter that exhibited a precipitous drop at the initial phase of rapid 
crack propagation in fatigue-precracked 2024-T3 and 7075-T6 SEN specimens. Dawicke 
et. al. [16] attributed this drop to the crack front tunneling prior to crack extension. 
However, the blunt, machine-notched 7075-T6 SEN specimens in this study did not 
exhibit the initial high CTOA. Thus the initial high value in CTOA in the fatigue- 
precracked SEN specimens is probably due to crack tip blunting prior to crack 
extension. 

Both CTOA and T*e remained constant despite the increasing crack velocity in the 
7075-T6 SEN specimens and the decreasing crack velocity in the 2024-T3 specimens. 
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CTOA in the 2024-T3 SEN specimens at crack arrest was lower than the CTOA's at the 
initiation of rapid crack propagation and during crack propagation. On the other hand, 
T*e at crack arrest in the 2024-T3 SEN specimens was higher than its constant value 
during crack propagation as shown in Figure 7. 

The distinct difference in the G,D and T*e responses at the terminal velocity, 
suggests that the traditional practice of characterizing dynamic fracture of somewhat 
ductile material through the G[D versus crack velocity relation based on LEFM could be 
misleading. The LEFM approach results in a terminal velocity, which is insensitive to 
the driving force, GID, while the T*e approach, based on elastic-plastic fracture 
mechanics (EPFM), suggests that the terminal crack velocity is a consequence of the 
saturation of the dissipated plastic energy. 

6.    Process Zone of Polycrystalline Alumina 

A hybrid experimental-numerical procedure was used to determine the crack closing 
stress (CCS) versus crack opening displacement (COD) relations of a high- and a 
medium-density polycryslalline alumina. 

6.1. EXPERIMENTAL ANALYSIS 

Wedge-loaded, double cantilever beam (WL-DCB) specimens were machined from high- 
density (AL23) and medium-density (AD90) commercial alumina. The grain sizes 
ranged from 5 to 45 u,m with an average size of 18 \im for the former and an average 
grain size of 9 p.m for the latter. A 50% side groove was machined to channel the 
stably growing crack that would otherwise curve away from it's intended straight path. 

A 1200 lines/mm specimen grating was affixed by a replica technique on the 
ungrooved surface of the fracture specimen. The specimen grating was then placed in a 
two-beam, phase-shifting Moir6 interferometer with an appropriate oblique incident 
illumination as described in Section 2.2. 

The fracture specimen was loaded in a rigid displacement controlled loading fixture 
and the Moire1 fringes at the peak load of each increment of increasing displacement 
loading and the stably growing crack were recorded. Load-line displacement was not 
recorded since the Moire1 fringes provided an accurate displacement measurement at the 
contact point of the loading rod and specimen. 

6.2. NUMERICAL ANALYSIS 

A two-dimensional, linearly elastic, finite element (FE) model of the WL-DCB 
specimen was used in a propagation analysis with the .applied wedge load, wedge- 
opening displacement, instantaneous crack length and the elastic properties as input 
conditions. The measured load at the time of recording of the Moire1 fringe pattern, 
instead of the applied displacement, was used to reduce the sensitivity of the numerical 
analysis to the error in the load-line displacement measurement.   The instantaneous 



crack tip location was determined from the Moire data with an accuracy of 0.1 mm. The 
CCS versus COD relation and the modulus of elasticity were the two disposable 
parameters in this numerical analysis and the Poisson ratio was assumed to be 0.22. 
The latter variation in the modulus of elasticity was less than 6 percent of the 
manufacturer's quoted value and is within accepted tolerance. 

6.3.  RESULTS 

A total of four specimens of each alumina, i.e., AL23 and AD90, were analyzed in this 
study. Moir6 fringe patterns obtained from each test provided the crack opening profiles 
for the two microstructures for several crack lengths and loading. Using the inverse 
analysis described previously, the crack closing stress (CCS) versus the crack opening 
displacement (COD) relation, which provided the best fit between the calculated and 
measured COD profiles, was obtained through an iterative procedure. Figure 8 shows 
the CCS versus COD relation of AL-23 alumina. For comparison, the CCS versus 

100 
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Figure 8. CCS versus COD relation for AL-23 alumina WL-DCB specimen. 

COD relation, which was obtained by the post fracture tension (PFT) tests described in 
[19], is superimposed in Figure 8. The lower CCS near .the crack tip, i.e., at a lower 
COD, is due to the averaging effect over a relatively large distance of 1 mm in the PFT 
specimen. The CCS versus COD relation of the AD90 specimen also compares well 
with that reported in [20]. This was expected, as the 11 pm average grain size of the 
alumina specimen of [20] was very close to the 9 \im grain size of AD90.   The CCS 



versus COD relation of AD90, however, lacked the trailing tail in Figure 8 due to the 
lack of the broad grain size distribution of AL23. The smaller average grain of AD90 
effectively reduced the bridging distance and hence the bridging force 

Figure 9 shows the variation in energy partition with crack extension in the AL23 
specimen. The dissipated energy in the FPZ was computed by summing up the work 
done in the FPZ per incremental crack extension. The rate of energy dissipation is 
about 95 percent of the energy released which is the difference between the total work 
and the stored elastic energy. The result of Figure 9 proves that the FPZ is the major 
energy dissipation mechanism in the brittle alumina. 

Figure 9. Computed energies for AL-23 alumina WL:)C3 specimen. 

6.4. CONCLUSIONS 

The crack closing stress versus crack opening displacement relations governing the 
fracture process zone, which trails a stably growing crack in the high-density alumina, 
WL-DCB specimens were quantified. 

The fracture process zone trailing the crack tip was shown to be the major energy 
dissipation mechanism in alumina fracture specimen. 
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7.     Conclusion 

The effectiveness of Moirg interferometry for studying the fracture response of real 
structural material was demonstrated. New and controversial results in low cycle fatigue 



of thin 2024-T3 aluminum, dynamic fracture of 7075-T6 aluminum and fracture of AL- 
23 and AD90 alumina weve presented. 

8.     Acknowledgment 

This paper summarizes the research conducted by J. H. Jackson, M. T. Kokaly, 
P. W. Lam, J. Lee, L. Ma, Y. Omori, D.K. Tran of the University of Washington, H. 
Okada, Kagoshima University and P. W. Tan of the FAA William Hughes Technical 
Center. This study is supported by FAA Research Grant 92-G-005, DOE Grants DE- 
FG06-94ER 14490, AFOSR Grant F49620-93-1-0210 and ONR Contract N00014-89- 
J-1276. 

9.    References 

1. Smith. Charles W.: Meaurements of three-dimensional effects in cracked body 
problems, in Jonathan S. Epstein (ed.), Experimental Techniques in Fracture, 
VCH Publishers, 1993, 253-289. 

2. Liechti, Kenneth M: On the use of classical interferometry techniques in fracture 
mechanics, ibid. loc. cit., 95-124. 

3. Rosakis, Ares J.: Two optical techniques sensitive to gradients of optical path 
difference: the method of caustics and the coherent gradient sensor (OGS), ibid, 
loc. cit., 327-426. 

4. Kalthoff, Joerg F.: Shadow optical method of caustics, in Albert S. Kobayashi 
(ed.), Handbook on Experimental Mechanics, VCH Publishers, 1993,407-476. 

5. Kobayashi, A. S., Harris, D. O. and Engstrom, W. L.: Transient analysis in a 
fracturing magnesium plate, Experimental Mechanics, 7,10 (1967), 434-440. 

6. Kobayashi, A. S. and Engstrom, W. L.: Transient analysis in fracturing 
aluminum plates, Proc. 1967 JSME Semi-International Symposium, 1997,172- 
181. 

7. Chiang, Fu-pen,: Moir6 and speckle method applied to elastic-plastic fracture 
mechanics, in Jonathan S. Epstein (ed.), Experimental Techniques in Fracture, 
VCH Publishers, 1993, 291-325. 

8. Post, D.: Optical inierference for deformation measurements - Classical 
holography and Moird interferometry, in W.W. Stinchcomb (ed.), Mechanics of 
Nondestructive Testing, Plenum Press, 1980, 1-53. 

9. Epstein, J.S. and Dadkhah, M.S.: Moire interferometry in fracture research, in 
Jonathan S. Epstein (ed.), Experimental Techniques in Fracture, VCH Publishers, 
1993, 427-140. 

10. Post, D.: Moirg interferometry, in Albert S. Kobayashi (ed.), Handbook on 
Experimental Mechanics, VCH Publishers, 1993,297-364. 

11. Wang. F.X., May, G.G. and Kobayashi, A.S.: Low-spatial-frequency steep 
grating for use in Moire interfermetry, Optical Engineering, 33,4 (1994), 1125- 



Tu-GL5 
p.15 

1131. 
12. Brust, F.W., Nishioka, T., Atluri, S JSf. and Nakagaki, M.: Further studies on 

elastic-plastic stable fiacture utilizing the V-integral. Engineering Fracture 
Mechanics, 22 (1985), 1079-1103.. 

13. Okada, H. and Atluri, S.N.: Further Study on the Near Tip Integral Parameter 
T*e in Stable Crack Propagation in Thin Ductile Plate, Proceedings of 
Aerospace Division, ASME, AD-Vil. 52, J.C.I. Chang et al. (eds.), 1997,251- 
2614. 

14. Pyro, C.R., Okada, H. and Atluri, S.N.: An Elastic-Plastic Finite element 
Alternating Method for Analyzing Wide Spread Fatigue Damage in Aircraft 
Structures, Computational Mechanics, 16 (1995), 62-68. 

15. Narashinhan, R. and Rosakis, AJ.: Three-dimensional effects near a crack tip in a 
ductile three-point bend specimen: Part 1 - A numerical investigation, ASME 
Journal of applied Mechanics, 57 (1990), 607-617. 

16. Dawicke, D.S., Newman, J.C. Jr., Sutton, M.A. and Amsstutz, B.E.: Stable 
tearing behavior of a thin sheet material with multiple cracks, Fracture 
Mechanics: 26th Volume, ASTM STP 1256, W.G. Reuter, J.H. Underwood 
and J.C. Newman, Jr. (eds.), ASTM , 1995. 

17. Dawicke, D.S., Plascik, R.S. and Newman, J.C. Jr.: Prediction of stable tearing 
and fracture of a 2000-series aluminum alloy plate using a CTOA criterion, 
Fatigue and Fracture Mechanics; 27th Volume, ASTM STP 1296, R.S. 
Plascik, J.C. Newman, Jr. and N.E. Dowling (eds.), ASTM, 1997, 90-104. 

18. Lee, J., Kokaly, M.T. and Kobayashi, A.S.: Dynamic ductile fracture of 
aluminum SEN specimens: An experimental-numerical analysis, Advances in 
Fracture Research, ICF 9, B.L.I. Karihaloo, Y.W. Mai, M.I. Ripley and R.Ö. 
Richie (eds.), Pergamon Press, 1997,2965-2972. 

19. Hay, J.C. and White, K.E.: Grain boundary phase and wake zone characterization 
in monolithic alumina, /. ofAmer. Ceramic Soc, 78 (1995), 1025-1032. 

20. Roedel, J., Kelly, J.F. and Lawn, B JR.: In situ measurements of bridged crack 
interfaces in scanning electron microscope, /. ofAmer. Ceramic Soc, 73 (1990), 
3313-3318. 



Tu - L14 
p.l 

Stress field at crack bifurcation 

STRESS FIELD MEASUREMENT AT BIFURCATION OF 
FAST PROPAGATING CRACKS BY 
HIGH-SPEED INTERFEROMETRY 

S. SUZUKI, I. INAYAMA, N. ARAI and T. MIZUTA 
Dept. Mechanical Engineering, Toyohashi University of Technology 
Tempaku-cho, Toyohashi, 441-8580 Japan 

Abstract 

Interferometry with high-speed holographic microscopy is applied to investigate stress 
field near fast propagating crack tips at the instant of crack bifurcation. It is found that, 
at the instant of bifurcation, the stress field in the vicinity of fast propagating crack 
tips deviates from the singular stress field of the dynamic fracture mechanics. Such 
deviation is due to the existence of bifurcated crack tips. 

1. Introduction 

When brittle materials are broken by external force, fast propagating cracks often 
appear, whose speed of propagation is at several hundred m/sec or more. If the crack 
speed is high enough, a fast propagating crack bifurcates into two or more cracks. 

Bifurcation is a characteristic feature of fast propagating cracks, accordingly, many 
researchers have tried to know the bifurcation mechanism [1J-[4J. However, (he 
bifurcation mechanism has not been clearly understood yet, because there are many 
difficulties in experimental studies on dynamic fracture phenomena. 

Recently, Suzuki developed high-speed holographic microscopy which can take three 
successive microscopic photographs of fast propagating cracks [5]-[8], High-speed 
holographic microscopy has -the spatial resolution of about 180 lines/mm, which is 
much higher man the other optical methods used for dynamic fracture research. High- 
speed holographic microscopy can therefore measure the stress field in the vicinity of 
fast propagating crack tips with very high accuracy. 

The present study applies interferometry to measure stress field in the neighborhood 
of fast propagating crack tips. High-speed holographic microscopy is utilized to 
photograph the cracks, their bifurcation process and interference fringes with high 
spatial resolution. And it is found that, at the instant of bifurcation, the stress field in 
the vicinity of crack tips deviates from the singular stress field of the dynamic fracture 
mechanics. Such deviation occurs not only after bifurcation but just before bifurcation. 
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Fig.l Principle of Interferometry. Fig.2 Crack, fringes and coordinates 

2. Experimental Method 

The present study uses transparent PMMA specimens with 3mm in thickness. A crack 
of the opening mode propagates rapidly in a specimen and bifurcates into two or more 
cracks in the observation area in the specimen. 

2.1. INTERFEROMETRY 

Figure 1 shows the principle of interferometry to measure stress field near crack tips. A 
crack propagates perpendicularly to the paper plane. An parallel light beam impinges 
upon specimen surfaces perpendicularly, and is reflected either by the front surface or by 
the back one of the specimen. The two reflected light waves interfere with each other 
and interference fringes appear around the crack tip. The interference fringes are 
contours of the thickness and refractive index of the specimen, consequently, they 
represent the contours of the sum of principal stresses. 

The dynamic fracture mechanics says that there exists the singular stress field around 
fast propagating crack tips [9]. Using the formula for the singular stress field, one can 
obtain the following equation about öm/ör as a function of r and 6, 

^=AK,(v)r-3/2f(e,v)F(v) 
or (1) 

where m is the fringe order, r is the distance from the crack tip, 0 is the angle measured 
from the crack propagation direction (Fig.2). And A is a constant, v is the crack speed, 
Ki(v) is the dynamic stress intensity factor, f(8,v) describes the circumferential variation 
of the stress field and F(v) expresses the dynamic effect. When you measure the crack 
speed v and am/ör at a certain position (r,8) in the singular stress field, you can know 
the dynamic stress intensity factor Ki(v) through the above equation. 

Here it must be noticed that if öm/ör is measured within the singular stress field of 
plane stress, the öm/ör measurements always give the unique value of Ki(v). But if the 
singular stress field does not exist around crack tips, the öm/ör measurements at 
different positions give different K values. Therefore, measuring Öm/ör at some 
different positions, one can examine whether the singular field is developed or not. 
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Fig.3 The optical system for high-speed holographic microscopy. 

2.2. HIGH-SPEED HOLOGRAPHIC MICROSCOPY [5]-[8],[10] 

Figure 3 shows the optical system for holographic recording of fast propagating cracks, 
in plan view [10]. A crack propagates in the specimen SP perpendicularly to the paper 
plane. When the crack is propagating in the observation area, &e three pulsed ruby 
lasers oscillate successively in the order of PL1, PL2 and PL3. The three laser pulses 
record the crack as the first, the second and the third hologram, respectively. The frame 
interval is lpsec or more. 

The light beam emitted from ruby laser PL1 is divided into two parts by beam 
splitter BS1. The reflected light beam from BS1 is diverged and collimated, and falls 
upon the holographic plate HP obliquely. This is the reference beam for the first 
hologram. The light beam transmitted through beam splitter BS1 is reflected by mirror 
M7, and passes through beam splitters BS4 and BS5. The light beam becomes a 
parallel light beam, passes through beam splitter BStf and falls upon the specimen 
surfaces perpendicularly. The light beam is reflected eiflier by the front surface or by the 
back one of the specimen, and makes interference fringes on the specimen. The 
reflected light from the specimen is reflected by beam splitter BS6, passes through 
imaging lens IL and impinges on the holographic plate perpendicularly. This is the 
object beam. The object beam is recorded as the first hologram. 

The second and the third holograms are recorded similarly. The angles of incidence 
of the reference beams for the three holograms are different from one another, and lie 
three holograms are superimposed on one holographic plate. That is the angle- 
multiplexing holography. 

At reconstruction, each hologram reconstructs separately the crack image and 
interference fringes at the position where the specimen existed at the recording. The 
reconstructed images are photographed through a conventional microscope. 
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Fig.4(a)  A fast propagating crack at 3.1psee before bifurcation.  The first frame. 

3.   Results  and   Discussions 

3.1. MICROSCOPIC PHOTOGRAPHS OF CRACK BIFURCATION 

Figure 4(a), (b) and (c) show microscopic photographs of a crack at bifurcation. The 
crack is of the opening mode and was propagating in a PMMA plate specimen at a 
speed of 682m/sec. The frame interval was about 4.8usec. The first frame in Fig.4(a) 
was photographed at 3.1usec before the bifurcation. The second and the third frames in 
Fig.4(b) and (c) were taken at 1.8usec and at 6.5usec after the bifurcation, respectively. 
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Fig.4(b) The fast propagating crack at l.Spsec after bifurcation.  The second frame. 

At first the crack bifurcated into two cracks, Crack 1 and Crack 2. Then Crack 2 
bifurcated into Crack 3 and Crack 4. At the right of Crack 1 in the third frame, you can 
find a crack which has stopped propagating. 

One can see many fine interference fringes around the crack tips. Stress field around 
the crack tips can be examined through the fringe analysis described in the previous 
section. 
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Fig.4(c) The fast propagating crack at 6.5psec after bifurcation. The third frame. 

3.2. NEAR-TIP STRESS HELD AT BIFURCATION 

Figure 5(a), (b) and (c) show the results of fringe analysis of the photographs shown in 
Fig.4(a), (b) and (c), respectively. The horizontal axis indicates the distance r from a 
crack tip, and the vertical axis indicates the K value obtained from the dm/dr 
measurement through Eq.(l). The dm/or measurement was carried out in the direction 
of 0=0', ±72'and ±90". As mentioned in the previous section, the K values are kept 
constant if the measurement is carried out within the singular field of plane stress. 
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Fig.5 The dynamic stress intensity factor measured by interferometry. (a) At 3. In sec before bifurcation, 
(b), (c) At 1.8usec and 6.5usec after bifurcation. 

3.2.1. Near-Tip Field after Bifurcation 
Figure 5(b) and (c) show that, the K values in the direction of 6=±72- and ±90" are 
larger than those in the direction of 6=0 in the region of r, 1.5mm<r<4mm. This fact 
means that the K field does not exist in the region, 1.5mm<r<4mm. Figure 5(b) and 
(c) show the results on the stress field after bifurcation, where there are two or more 
crack tips. The singular stress field of the dynamic fracture mechanics is for cracks 
whose tips are not bifurcated. The deviation of the near-tip field from the singular 
stress field is caused by the bifurcated crack tips shown in Fig.4(b) and (c). 

3.2.2. Near-Tip Field before Bifurcation 
The most interesting thing in the measurement results is that the near-tip field deviates 
from the singular field in the region of r, 1.5mm<r<4mm, not only after bifurcation 
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but also before bifurcation (Fig.5(a)).    This may be caused by microcracks and 
attempted branches which appear near a crack tip just before bifurcation. 

Reflection type high-speed holographic microscopy can observe specimen surfaces 
only. Thus it can find microcracks and attempted branches on specimen surfaces, but 
cannot find those inside specimens. The deviation of the near-tip field from the singular 
field measured before bifurcation may be due to microcracks and attempted branches 
which were not photographed in Fig.4(a), but existed within the specimen. It was 
reported that many attempted branches appear near crack tips just before bifurcation, and 
were photographed by high-speed holographic microscopy [10]. 

4.   Conclusions 

(1) Interferometry with the reflection type high-speed holographic microscopy can 
measure the stress field in the vicinity of crack tips at the instant of crack bifurcation. 
(2) At bifurcation, the stress field in the vicinity of crack tips deviates from the 
singular field which exists near un-bifurcated crack tips. Such deviation occurs not only 
after bifurcation but also just before the bifurcation. 
(3) The deviation just before bifurcation may be caused by microcracks and attempted 
branches which appear near crack tips just before bifurcation. 
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Abstract 
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Finite geometry problems, in which two or more cracks are in close proximity so that their 
stress fields interact, are generally found to be substantially more challenging than problems 
involving single or isolated cracks. The present study how, combining optical techniques 
such as photoelasticity with high density geometric moire, a method of modelling single 
cracks with similar loadings and geometries, and an elasticity technique well-suited to 
problems with multiple boundaries, produces an overall solution for the stress field around 
multiple crack tips in finite geometries. 

Introduction 

The basic approach adopted here is to use the generalized Westergaard equations [1] to 
represent the stress field around each individual crack tip as if it were an isolated crack and 
then apply the Schwarz alternating method [2], or method of successive stress removal, to 
obtain the additional stress fields that must be superposed on the original (isolated) solutions 
to ensure that the boundary conditions on each of the crack faces are satisfied The end result 
of this iterative approach provides the overall stress field for the entire region surrounding 
both crack tips. 

This overall stress field can then be utilized in a local collocation analysis procedure in an 
analogous manner to that currently followed for single crack problems [3,4]. Photoelastic 
isochromatic and high density geometric moire fringe patterns for the case of two parallel 
edge cracks in pure bending were the source for experimental data collection. Additional data 
was obtained from finite element models of similar geometries for which the calculated in- 
plane cartesian stress components were converted into isochromatic data and nodal 
displacement values were used directly. 
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The objectives of the study can be summarized as being: (a) to utilize the combined 
Westergaard-Schwarz approach to obtain a full-field representation of the stress field 
surrounding two parallel edge cracks in a finite body, (b) to use this stress field representation 
to analyze the case of two parallel edge cracks under pure bending by performing local 
collocation analyses of experimental and finite-element-generated photoelastic and high- 
density geometric moire data; (c) to determine the influence of the presence of the other crack 
on the stress intensity factors for the multiple crack configuration; and (d) to establish 
guidelines for the separation distances at which the two cracks could be considered to behave 
as one crack or as two separate cracks which do not interact with one another. Obtaining 
converged solutions for the local collocation analyses was not always a trivial problem 
However, in general, the combined Westergaard-Schwarz method gave satisfactory results for 
both the experimental and the finite-element-generated data. 

The solutions for the experimental analyses were verified by comparing computer generated 
fringe plots [5] with the original fringe patterns. For the finite-element-generated data, the 
verification was to compare the J-integral value calculated from the stress intensity factors for 
each crack tip with the J-integral value calculated directly from the finite element analysis. 

Synopsis of Procedure and Results 

The geometry of a four-point bend specimen with two parallel, interacting edge cracks is 
shown in Figure 1. In all cases, the length of the first crack, denoted ai in the figure, was kept 
constant at a value of aiAV = 0.50. The length of the second crack, denoted a2 in the figure, 
was then varied from a2/W = 0.25 to a2/W = 0.625, in steps of 0.125. This provided a range 
of values for the relative crack lengths, a^ai ranging from zjz\ = 0.5 up to a^ai = 1.25, in 
steps of 0.25. The spacing between the two cracks, denoted c in the figure, was varied from a 
value of c/ai = 0.50 up to c/ai = 1.00, in steps of 0.25. In this manner, the interaction effects of 
the two crack tips could be examined as functions of both the relative crack size and the crack 
plane separation. 

Finite-element models of the various geometrical combinations of a2/ai and c/ai were 
generated using a standard pre-prccessor (PATRAN) and the nodal displacements and 
element stresses calculated using a commercially-available finite element code (ABAQUS). 
Eight-noded isoparametric elements were used throughout and no attempt was made to 
incorporate special crack-tip singularity-type elements. This choice was based on the desire to 
insulate the results from any kind of assumed singularity-dominance over a finite region since 
the size and shape of any singularity-dominated zone(s) would not be known a priori in a 
general application. Furthermore, it was desired to simulate the experimental data analysis 
conditions as closely as possible throughout and it would be necessary to exclude data from a 
finite region around the crack tip in any experimental arrangement because of a lack of 
generalized plane stress in the very near vicinity of the crack tip. 

The experimental results were obtained using specimens machined from a PSM-1 
polycarbonate sheet which was free of residual stresses. For the geometric moire experiments, 
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moire gratings with a grating frequency of 20 lines/mm (500 lines/inch) were 
photographically reproduced from a master grating and bonded to the specimens. Since both 
u-field and v-field information was desired, the specimen grating used was a bi-directional 
line grating, while the reference gratings employed were uni-directional line gratings of the 
same frequency. The test specimens were loaded in four-point bending using a displacement- 
controlled load frame placed within the optical arrangement of a standard, diffused-light 
polariscope for the photoelastic tests. The same light source was also utilised (without the 
polarizer-analyzer pairs) for the geometric moire experiments. 

The resulting images were captured and stored using a CID camera and a commercially- 
available digital imaging system with 8-bit resolution. Figure 2 shows the changes 
observed in the u-field pattern as the relative crack size was increased from a^ai = 0.50 to 
a2/ai = 1.25 for a fixed crack plane separation of c/ai = 0.75. Figure 3 shows the 
corresponding changes in the v-field pattern for the same relative crack sizes and crack plane 
separation. 

Data points for analysis purposes were selected over pre-determined data gathering domains 
and stored in data files for later analysis by the local collocation programs that had been 
developed. The unknown coefficients of the series-type stress field representations employed 
were determined in a least-squares sense from these analyses. The quality of the solution was 
estimated quantitatively by examination of the average error between the computed and actual 
fringe orders over the data analysis region and by a visual comparison of the fringe pattern 
predicted by a solution set with the fringe pattern from which the data had been extracted. 

An example of the quality of the comparison between predicted (computed) and actual 
photoelastic fringe patterns is shown in Figure 4 for the case of two cracks with a separation 
of c/ai = 0.54 and a relative crack length of a2/ai = 0.833. A similar comparison is shown in 
Figure 5 for the case of a u-field corresponding to c/ai = 1.0 and ajax = 1.25. 

Figure 6 shows a comparison of the overall results for the case of two cracks with a crack 
plane separation of c/ai = 0.75, and relative crack length, aVai, varying from 0.50 to 1.25. 
The figure compares the J-integral value calculated directly (using a contour integral) from 
the finite element results with the J-value obtained from the stress intensity factors calculated 
at each crack tip using the local collocation analysis of the finite element data. 

Conclusions 

The Westergaard-Schwarz approach was found to be suitable for representing the stress and 
displacement fields over relatively large regions surrounding the tips of two parallel, 
interacting cracks in a finite geometry. The resulting model for the stress and displacement 
fields proved to be useful in interpreting the data for stresses and displacements obtained 
using the experimental techniques of photoelasticity and geometric moire and the method of 
finite elements. 
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The results showed that: 
(a) as the length of one crack increases relative to the length of a second crack of fixed 

length, the interaction between the two crack-tip fields acts to lower the opening-mode 
stress intensity factor of the crack of fixed length; 

(b) the opening mode stress intensity factors for the two cracks are not significantly affected 
by changes in the crack plane separation, at least over the separation range studied; and 

(c) the interaction effect between the two crack-tip stress fields causes shear-mode stress 
intensity factors to develop in cases that would be under predominantly opening-mode 
loading in an isolated, single crack situation. 
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Figure 1 The geometry and loading 
of a four-point bend specimen with 
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Figure 2 The clianges in the u-field pattern observed as the relative crack size was increased 
from a^ai = 0.50 to adft = 1.25 for a fixed crack plane separation of c/ai = 0.75 
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Figure 3 The changes in the v-field pattern observed as the relative crack size was increased 
from a2/ai = 0.50 to a^ai = 1.25 for a fixed crack plane separation of c/ai = 0.75 
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Figure 4 Reconstructed and experimentally recorded photoelastic fringe patterns 
corresponding to a relative crack size, a^ai = 0.833, for a crack plane separation, c/ai = 0.54 
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Figure 5 Reconstructed (computer-generated) and experimentally recorded u-field patterns 
corresponding to a relative crack size, a2/ai = 1.25, for a crack plane separation, c/ai = 1.0 
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Figure 6 J-integral values calculated from finite element results using a contour integral and 
the stress intensity values at each crack tip calculated using the local collocation method; 
shown as a function of the relative crack size, a^ai, for a crack plane separation, c/ai = 0.75 
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ABSTRACT: A specimen partially bonded by two wedge-shaped plates of dissimilar 
materials is impulsively loaded. Tip response of a crack along the interface is 
investigated to the action of stress wave with transmission and reflection. A hybrid 
technique of combining dynamic photoelasticity with dynamic caustics is used to 
analyze the wave propagation in media and the singular behavior of crack tips. Based 
on some characteristic dimensions of the caustic curves belonging to each medium, the 
complex stress intensity factors of the interfacial crack tips are computed, showing an 
oscillation history of the modulus with the passing of the compressive wave and the 
intersection of the reflected tensile pulse. 

1.Introduction 

Debonding of interface between two-phase material has been a typical failure in 
composite materials. Under impact loading, the interface of the multiphase materials 
may fracture rapidly due to the action of stress wave. Even in a homogeneous medium 
of elasticity, in fact, internal fracture may occur resulting from the focusing of the stress 
wave reflected from the boundaries of a solid body1'1. When a specimen of bimaterial is 
impulsively loaded, the tips of a crack lying along the interface may be initiated to 
cause a high speed debonding of the dissimilar media*21. 

The optical method of caustics is a useful technique to study the singular behavior 
of crack tip with high stress gradients, as proved by plenty of work by Kalthoff'31, 
TheocarisM1, et al. For the interface crack in bimaterial, Theocaris151 used the method to 
determine the complex stress intensity factors at tips under normal and shear loading. 



Herrman'61 extended the technique to dynamic case to evaluate the caustic patterns for 
arbitrary curvilinear interfacial cracks. When we investigate the response of interfacial 
crack tip to stress wave, however, the information provided by caustic shadows is often 
not enough to understand the dynamic behavior of multiphase media. The reason is that 
the optical caustics is a local effect of high stress gradient around crack tip, which can 
not offer a visual image of stress wave propagation in whole field. 

A hybrid technique of combining dynamic caustics and dynamic photoelasticity has 
been proposed by the authors'71, to study the fracture mechanism of crack in 
homogeneous material, that includes the interaction between the stress wave in a 
cantilever beam and the crack normal or inclined to the beam edge'8', the curving 
fracture of a crack in bent beam under impact'91. In this paper, this optical method is 
applied to the response study of interfacial crack to stress wave focusing. Two kinds of 
patterns, the isochromatic fringes of photoelasticity and the optical shadows of caustics, 
are recorded at the same time instants but with separated films. With the help of the 
isochromatic patterns, the stress wave propagation in the whole field can be visualized 
through the movement of fringes in the bimaterial specimen, showing the transmitting 
and superimposing of the wave fringes. Meanwhile, the patterns of caustic shadows 
provide the local responses at the vicinity of crack tips to the wave action with mixed 
type of loading. 

2. Impact Experiment and Dynamic Recording 

2.1 SPECIMEN AND LOADING 

The bimaterial specimen used in impact test is made of epoxy resin and polycarbonate, 
bonded together with a high speed adhesive. The shape of the specimen is a model easy 
to produce the focusing of stress wave, 
consisting of two wedge-shaped plates of i 
angle a=22°, as illustrated in Figure 1. The " I 
mechanical properties of the materials are ^ |P B 
given   in  the  Table   1,  by showing  the 
medium of epoxy resin as Phase 1 and that 
of polycarbonate as Phase 2, respectively. 

A crack with length of 7mm is fabricated 
along the interface of the dissimilar 
materials, with its upper-tip U below the 
top edge AB of the specimen by a distance 
of/=(AB/2) sin2a. At the center position P 
of the top edge, an impulsive point load is 
acted by a bullet of gun, that produces a 
compress ive stress wave propagating in 
the bimaterial specimen. 

U 
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Phase i\/   J 
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a / 

tin /// 7 

Figure 1, The specimen of bimaterial 



TABLE 1 Mechanical properties of the materials 

Material 

Phase i 

Phase 2 

Young's module (N/m2) 

£r=4.7xlQ9 

£,=2.6xl09 

Poisson's ratio Thickness (mm) 

v;=0.35 t,=5 

2.2 HIGH-SPEED RECORDING SYSTEM 

A modified Cranz-Schardin camera is used to record dynamic patterns of impact. The 
light source consists of 16 (4x4) spark gaps that are precharged with high voltage and 
then flash sequentially by discharge to produce strong point-like light sources. 

The light beam is collimated by a field lens L, to illuminate the specimen B, as 
illustrated in Figure 2. The light becomes circularly polarized after passing through a 
polarizer P, and then a quarter wave plate Q,. Another field lens L2 focuses the light 
beam into an image lens 1, of small aperture, that corresponds to the i-th source flash of 
S^ In a dark box, a partially reflecting mirror M„ separates the light beam into two parts. 
The reflected part is received by a set of films located on a plane Ic that is of a distance 
from the image plane I0 of the specimen. The off-focusing of this recording plane 
enables the caustic shadow of crack tip to be recorded with an object distance of z0 from 
the specimen. The light transmitting the mirror Mp, meanwhile, passes another quarter- 
wave plate Q2 and then a polarizing analyzer P2, to record the isochromatic patterns of 
moving fringes. 
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Figure 2, A schematic illustration of high speed recording system of the hybrid method 



3.Results and Discussions 

Figure 3 presents a series of photographs recorded by the camera system mentioned 
above. With different time sequence, the left column of patterns shows the isochromatic 
fringes of the specimen, and the right column gives the caustic shadows magnified 
around the crack tips, presenting the wave motion in whole field and the singular 
response of the interfacial crack, respectively. 

3.1 DATA EVALUATION FROM PATTERNS 

The isochromatic fringes result from the transparent specimen with optical property of 
stress-birefringence. The fringe number N is related to the difference of principal 
stresses given by 

«jf'-o-''1 =#/,//, (i=l,2) (1) 

where the index / means the ;-th medium of bimaterial specimen,/the dynamic stress- 
fringe value calibrated by impact test, and t, is the thickness of the plate as shown in 
Table 1. 

The shadow pattern of caustics represents an optical mapping of the singularity at 
crack tip to the light distribution of caustic curve on a reference screen. When the 
bimaterial specimen is illuminated by collimated beams, as schematically illustrated by 
Figure 4, the light rays transmitting the near region of the crack tip are strongly 
deviated by the refractive index change of the materials and the thickness change of the 
specimen, due to the concentrated deformation around tips. Attaching a coordinate 
system of %-0- TJ to the specimen plane, with the axis E, in coincidence with the interface 
of those two dissimilar materials, the shadow spots surrounded by bright caustic rim 
can be observed on the screen plane X-O'-Y. The caustic curve consists of points with 
complex variable WrX,+jYit at which the deviated rays come from the position vector 
Gr&+JT]i> in the specimen plane, with a mapping equation of"01. 

W,=^-C,{\+jß)K,Cn-Jß (2) 

where C, is a constant determined by the optical property of the material and the 
thickness of specimen, and also by the off-focusing distance ZQ of recording plane, Kt is 
the complex stress intensity factor of crack tip, with K,=gK2> whereas g and ß are 
constants. 

An initial curve, surrounding the interfacial crack tip on the specimen plane to 
correspond to the caustic curve on the screen, satisfies the equation of 

J = d(X,Y)ld{$,rj) = Q (3) 

Substituting the expression (2) into above equation and letting Grr^*\> tne radius r,of 
the initial curve can be written as 
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Figure 3, Dynamic patterns of isochromatic fringes and caustic shadows 



Figure 4, An illustration of caustic mapping for an interfacial crack in bimaterial, 

r, = //,*,'   exp> (4) 

where Hr\C,(}/2+jß)(2/2+jß)\Vi. Therefore, the equation (2) of the caustic curves can 
be expressed as 

W 
\*IP 

, = //,|K,|2,5exp(iA*,)exp( >«*,)+C,(-L-yy?)|K/|j//,||K/|
2MJ**      (5) 

xp( -f^,)exp \j\-6, + ß ln( H,\Kl\
2li) + i/*V, + $*,} 

where &t is the argument of AT,. 

By geometrical measurement of some characteristic dimensions of caustic curves, the 
evaluation of the stress intensity factors Ki can be convenient for the interfacial crack 
tips. The coordinates of the end-point of caustic branches, or X*°>'„ Y0>, and X*"',, Yn>', 
corresponding to <fr=Q and <p=n for the medium of epoxy resin, and X°>2 Y°'2i and A*"";

2, 
Y'"'2, to ^=0 and <fr=-n for the medium of polycarbonate, respectively, are used to 
determine the distance dt between the end-point of the caustics belonging to material /, 
from that the module \K\ and the argument 6, can be solved by numerical computation, 
and thus the values ofK2 can be obtained by K:=gK,. 

3.2 DYNAMIC RESPONSE OF CRACK TIPS 

Following a concentrated impact at the center position of the specimen top-edge, a 
compressive pulse radiates from there moving downwards; as shown by the 
isochromatic patterns of fringe rings in Figure 3. The stress wave propagates in the 
bimaterial specimen and the dynamic fringes soon reach the upper tip (Tip-U) of the 
interfacial crack and then the lower tip (Tip-L) by transmission. This action results in an 
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impulsive loading at the crack tips with stress concentration. The modulus of the 
dynamic stress intensity factors \K,\ and \K2\, determined by the caustic curves as 
described in the last section, show the tip response of the crack lying along the interface 
of those two dissimilar media, as given in Figure 5(a) and 5(b), respectively. 

During the beginning period from the instant of f=l \6jus to f=206/zy, the amount of 
Ki at the Tip-U varies between 3.5xlO*N/m3/2 and 6.5x\04N/m3/2, and that of K, at the 
Tip-L oscillates in a range of 4.2xlO*N/m3/2 to lOxlO^/w^respectively. The tendency 
of those variations is a decrease of K, values, corresponding to the passing of the 
transmitting wave. The amount |/q reaches the minimum at the instant of f=242/zy with 
\Kuh = 3Mx\VN/m3\\K"2\ = 2.2x\VN/m3>2, and |/^|=4.7xl04A^,|^| = 3.84xlO< 
N/m , respectively, when the main part of the compressive pulse has run over the crack 
tips towards the lower base and the slop boundaries of the specimen, with fewer fringes 
around the interfacial crack. 

The stress waves reflected from the sloping sides of the wedge move back the 
interface of bimaterial and produce a tensile pulse intersecting on the crack, that makes 
the amount of \K,\ increased rapidly due to a stress wave focusing. Since then, the form 
of isochromatic patterns has been changed from the fringe rings to those nearly parallel 
to the interface, as presented by the last part of the isochromatic fringe patterns in 
Figure 3. This kind of fringes become more and more and reach the highest density at 
the instant of t=296fjs, with the arrival of the wave reflected from the wedge apex. 
Correspondingly, the module \K^ at Tip-L reaches the maximum value at first, with 
\K^\max=U.6xl04N/m3/2 and \KL

2\mm=\2.\x\tfN/m3/2, respectively. And sequentially, 
with the movement of the reflected wave upwards, the amount of \K\ has the maximum 
of \KULa*= 8.Sxl04N/m3/2 and \Ku

2\max=l.Ax\04N/m3/2, respectively. 
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Figure 5, The module of the complex stress intensity factors at the upper-(a) and lower- (b) tip 



4. Conclusions 

Under the action of impact load, a bimaterial specimen of wedge-shaped plate can 
produce a tensile pulse in the interface of two dissimilar materials by stress wave 
focusing. In the dynamic history, the complex stress intensity factors K, of crack tips 
show to be oscillated with the action of pulse wave. The amount |KJ in epoxy resin side 
is relatively higher than that in polycarbonate, but both of them reach their maximum 
values when the stress wave reflected from specimen boundaries by focusing at the 
crack tips. 

The experimental results show the hybrid method of combining dynamic 
photoelasticity and caustics to be a useful technique to study the dynamic behavior of 
interfacial crack tips under impulsive loading. The isochromatic fringes give the stress 
wave transmission, reflection and focusing in the specimen of bimaterial. The caustic 
shadows present the responses of the crack tips to the wave action. The technique offers 
a visual way to interpret the dynamic stress history in the composite structure, and also 
a useful tool of quantitative analysis for the wave propagation in bimaterial and 
singularity behavior of the interfacial crack tips. 

Acknowledgements: The support of NNSF of China is greatly appreciated. 
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1. Abstract 

Optical strain gages were developed in 1960s and have many advantages over resistance 
strain gages. For instance, they are noncontacting, have extremely short gage lengths, and 
can be used to measure large strains. The interferometric strain rosettes are extended from 
the interferometric strain gages and have recently been developed to measure residual 
stresses. The technique is quantitative and is expected to be an accurate method of 
residual stress measurement. The method can potentially resolve many challenging 
problems which may not be tackled by any other means. 

2. Introduction 

Residual stresses exist in a solid body free from external forces and constraints. They are 
frequently induced during fabrication operations, such as casting, rolling, welding, 
stamping and forging. Traditional methods employed for determining residual stresses 
include hole-drilling, in which the strains relieved by the hole are measured with a 
resistance strain rosette (Kobayashi, 1993). However, the method has several drawbacks 
such as being destructive to test objects, attachment requirement to a surface area, and 
high costs incurred for mounting a rosette, installing a milling guide and gathering data. 
Nondestructive methods such as X-ray diffraction, ultrasonic and magnetic methods are 
all highly sensitive to rnicrostructure properties such as texture, working hardening and 
grain size (Lu et al, 1995). The methods remain semi-quantitative and are only useful for 
comparative measurements. Recently there has been considerable interest in using optical 
methods such as moire, holographic and speckle interferometric methods in 
measurements of residual stresses (McDonach et al, 1983, Nicolerto, 1991, Dai et al 
1996, Wang and Chiang, 1997, Perry et al, 1997, Nelson et al, 1994, Hung 'et al, 1996,' 
Antonov, 1983, Goncalves et al, 1996). Some of the limitations of conventional methods 
can be overcome by using optical methods which are noncontacting and don't require 
center-hole drilling. However, application of the moire method can be time consuming 
and is limited to flat objects (Post et al, 1994). The holographic interferometry method 
requires strict vibration isolation (Vest, 1976) and thus is not well suited for industrial 
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settings.    Most full-field optical methods require either flat surfaces or rather strict 
vibration isolation. 

In contrast to the full-field optical methods, optical strain gages were developed to 
measure strain components on one location of a material surface. Grating diffraction 
strain gage was developed to measure dynamic strains (Bell, 1956; Valle, Cottron and 
Largarde, 1996), and the diffractographic strain gage was based on laser diffraction from 
the gap between two blades attached to a specimen surface (Pryor and North, 1971). The 
interferometric strain/displacement gage technique (ISDG) was based on interference of 
laser reflected from two grooves (Sharpe, 1968). The interferometric strain rosette 
technique (ISR) (Li, 1995) was recently extended from the ISDG. Compared with 
resistance strain rosettes (Dally and Riley, 1991), the ISR is quantitative in nature and has 
high accuracy for measurements of three strain components. In addition, the ISR 
possesses a few advantages over resistance strain rosettes. For instance, the ISR has been 
developed to measure out-of-plane displacement derivatives (Li, 1996) and has a high 
frequency response to measure vibrations (Li, 1997a). Both the ISDG and ISR have 
extremely short gage lengths on the order of 100 micrometers so that localized strains can 
be measured. In fact, the ISDG has been used to measure displacements and strains in 
miniature specimens (LaVan and Sharpe, 1997). 

3. Principle of Residual Stress Measurement by ISR 

An ISR consists of three micro-indentations and may have the configurations of delta and 
rectangular rosettes. Fig. 1 shows a typical 60° ISR which has a delta configuration. Fig. 2 
shows a typical 45° ISR which has a rectangular configuration. Three in-plane strains in 
the separating directions of the indentations can be measured. For instance, a 60° ISR can 
measure normal strains in the directions of 0, 60 and 120 degrees. A 45° rosette can 
measure normal strains in the directions correlation with 0, 90, and 135 degrees. 

- 10|am 10 urn 

-100 um 

Fig. 1     The schematic diagram of a 6(f ISR 

~100|im 

Fig. 2 The schematic diagram of a 45" ISR 

The ISR may be used in conjunction with the hole-drilling method or ring-core method to 
measure residual stresses. Three micro indentations of an ISR are depressed on the 
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surface of an evaluated object. When a micro-hole or a ring core is drilled near an ISR 
the residual stresses at the location of an ISR are released. The released stresses cause 
strains between the three indentations. The relieved strains are measured by the ISR and 
are used to calculate residual stresses. 

3.1 RING-CORE METHOD 

The basis for ring-core method is to completely remove a ring of the material around an 
ISR. When a ring-core is cut around a 60° ISR, the measured strains are in the directions 
of 0, 60 and 120 degrees, namely, e0 Sßo and e)2o. Then the three strain components ex sy 

and yxy are calculated by using strain transformation equations as follows: 

Ex   = £o 

Ey  =E60+  E,20-Eo (1) 

Yxy = (E60- E|20)/sin60 

Similarly, the strain components can be calculated from the measurements of a 45° ISR 
by using strain transformation equations. The relieved residual stresses can be calculated 
by using Hooke's law. 

CTy = E(VEX + Ey)/(1-V2) 
ax = E(Ex +vsy)/(l-v

2) (2) 

f xy ~*J Yxy 

where E is Young's modulus, v is Poisson's ratio, ay and ax are normal stresses, and xxy 

is shear stress. 
It is assumed that the residual stresses at the location of the ISR are completed 

relieved. The amount of relieved stresses approximately equals to the amount of real 
residual stresses. Since the size of the ISR is tiny, the inner diameter of the ring-core can 
be made very small that the measurement is highly localized. The cutting process should 
be more convenient than that used with a resistance strain rosette. 

3.2 HOLE-DRILLING METHOD 

A hole can be drilled to relieve residual stresses. In a thin-thickness specimen, a through 
hole is drilled. The residual stresses are determined by employing Kirsh's equations for 
an infinite plate subjected to a biaxial stress state (Li, 1997b). In a thick component, a 
blind hole is drilled (Li et al, 1997). When the residual stress distribution versus depth'is 
of concern, an incremental hole drilling process is employed (Tjhung et al, 1998). For 
incremental hole-drilling, residual stresses are calculated from the measured strains by 
employing either calibrated coefficients or finite element methods. 

The method of material removal may also be done using other techniques. For 
example, chemical etching technique may be used to remove layers of materials to study 
the distribution of the residual stresses with depth. The chemical environment should not 
interfere with the ISR in contrast to the case of a resistance strain rosette. 
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4. Two-step Measurement Program and Evaluation Tests 

A movable ISR system was constructed. It contains an 8-mw He-Ne laser and six 
photodiode sensors. The direction and distance between sensors are adjustable. The 
system is vertical and may be set up in front of any machine for testing purposes. 
Traditionally, the ISR system is was used for real-time measurements. When the 
specimen is loaded, the ISR records the strain increment for each step of loading. The 
total strain value is an accumulation of the increments in real time. 

When the ISR is used to measure residual stress, a two-step measurement 
procedure must be developed for taking two sets of data separately. An IBM computer is 
programmed to record the two measurements and calculate the strain incurred between 
the two steps of measurements. 

To evaluate the measurement procedure and the computer program, various 
tensile/compressive tests are conducted on a bar specimen. The dimensions of the 
specimen are: thickness =3.175mm, width=51.2 mm, Length =300mm. The material 
properties of the specimen are recorded in TABLE 1. 

TABLE 1: Material properties of aluminum 6061 
E G V CTV <?u 
70GPa 26GPa 0.33 270MPa 310MPa 

The ISR movable system is set up at a distance of 44 cm from the specimen. The gage 
length of the ISR is 250 micrometers. The first group of tests are the so called "zero-shift" 
tests. When the applied load is zero, two-step measurements are taken within a few 
minutes. Theoretically, there is zero strain in the specimen and the program should output 
zero readings. But in real experiments, nonz;ro strains were recorded. The strain 
components in x-y coordinates along the transverse and axial directions of the bar are 
calculated by using equation (1) and shown in TABLE 2. The maximum shift of strain 
readings between the two steps of measurements is about 7 microstrains. The maximum 
difference for the stresses calculated from the strains is 0.7 MPa. These nonzero results 
may be due to the sensitivity of the electrical-optical system to its environment. 

TABLE 2: Two step measurements of strain and stress by the ISR at zero load 

Test# 
Axial strain, 
E>.(U£) 

Transverse 
. strain, 

EX(US) 

Shear strain, 

Y(HE) 

Axial stress, 
ffy (MPa) 

Transverse 
stress, 
ax(MPa) 

Shear 
stress. 
t(MPa) 

Test 1 -1.66 -0.31 3.56 -0.14 -0.68 0.09 
Test 2 4.08 1.47 -5.38 0.28 0.097 -0.15 
Test 3 4.28 -0.1 -0.52 0.33 0.10 -0.013 
Test 4 -0.33 -1.34 1.56 -0.11 -0.06 0.04 
Test 5 4.28 -0.10 -0.52 0.33 0.10 -0.013 
Test 6 1.2 0.34 1.17 0.10 0.057 -0.03 
Test 7 2.42 1.51 1.61 0.23 0.18 0.04 
Test 8 -0.66 -2.76 -6.25 -0.23 -0.12 -0.16 
max value 5 3 7 0.4 0.7 0.2 
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The second group of tests apply loads to the bar. Two-step measurements are conducted 
before and after a load is applied. The stress and strain between zero and the applied load 
can be calculated from the theory of uniaxial loading. The measured strains by the ISR 
agree well with the results of the calculation and resistance strain gages in TABLE 3 and 
Figure 3. The maximum relative difference of the axial strain is 6% between the ISR data 
and the calculated strains. 

TABLE 3: The comparison of the results of the ISR measurements with 
resistance strain Rage measurements.  

that of the calculation and the 

Test 
# 

j (MPa) 
Theory 

27.64 
27.37 390.94 
-13.96 
-16.42 
-24.90 
-27.37 
-35.30 
-41.05 
-42.69 

Theory 

394.85 385.00 
383.11 

-199.43 
-234.57 
-355.76 
-390.94 
-504.32 
-586.41 
-609.87 

-201.93 

ISR 
Axial strains, sv (us) 

409 

-250.52 
-358.09 
-381.83 
-524.00 

-566.77 
-583.35 

Strain Gage 

394 

-213 
-249 
-376 
-408 
-529 
-592 
-611 

-9.85 
-7.83 
-2.50 

Difference 
between 
ISR & Theory 

Theory 

-15.95 
-2.33 
9.11 
-19.68 
19.64 
26.52 

-130.30 
-129.01 

Transverse strains, ex (UE) 

-133.93 

65.81 
77.41 
117.40 
129.01 
166.42 
193.52 
201.26 

81.88 

ISR 

-3.63 
-143.53 

100.20 
126.07 
137.31 
208.04 
200.49 
219.15 

Difference 
between 
ISR & Theory 

-14.52 
16.07 
22.79 
8.67 
8.30 
41.62 
6.97 
17.89 

(S 
Q. 
2 
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to 
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Figure3. Theplots of the ISR data, the resistance strain gage data and the calculated stress-strain. 
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5. Experiments of Residual Stress Measurements by Ring-core and Hole-drilling 

Once the two-step measurement procedure is established and evaluated, the ISR method 
may be used to measure real residual stresses in manufactured components. For example, 
the aluminum 6061 bar specimen used in the above uniaxial tests contains residual 
stresses induced during its rolling process. The bar specimen after a heat-treatment is 
taken as the test sample of the ISR experiment by using the ring-core method. A cutter is 
specially made and hardened. The inner diameter of the cutter is 2.0 mm and the outer 
diameter is 4.5 mm. First, a 60° ISR of 250 micrometer gage length was indented on the 
surface of the bar specimen. Secondly, the ISR system was set up in the same way as the 
previous uniaxial tests. Then the first step of the measurement is done. A milling guide 
(model RS-200, Measurement Group, Inc.) was positioned, and a milling rod with a 
universal joint connected with a hand-drill was used to cut a ring around the ISR. 
Precaution must be taken to avoid any disturbance to the ISR system. The second step of 
measurement process was done by measuring the strains relieved during the ring-core 
cutting. The results are listed in TABLE 4. Strain components in x-y coordinates along 
the transverse and axial directions of the bar are calculated by using equation (1). The 
ring has an inner diameter of 2.0 mm and outer diameter of 5.0 mm. The depth of the 
cutting is about 2 mm, which is supposedly enough to relieve the residual stresses 
completely. The original residual stresses should take the opposite signs of the stress 
calculated by using equation (2). In fact, the ring-core cutting relieves positive residual 
stresses to get negative strains in the center of the remaining materials. The residual 
stresses are recorded in TABLE 4. 

TABLE 4: Measurement of residual stresses 
ring-core cutting method. 

in the aluminum bar and titanium block by using the ISR and 

Test# 
Strains (us) Residual stress (MPa) 

ISR strains Strain components 
£60 £o E|20 ^xx £w Yxv a« CTyy txv 

1 -659.4 - 569.0 -508.3 -569.0 -588.8 -174.5 94.2 95.9 7.2 
2 112.8 155.6 175.3 155.6 140.3 -72 -21.7 -20.6 3.0 

The second ring-core cutting experiment was performed on a surface shot-peened 
titanium block. The material properties of TA6V are: E=110 GPa and v=0.3. Since the 
material was extremely hard, drilling was too difficult to cut more than 0.1 mm in depth. 
The inner diameter of the ring-core is 2 mm, and the outer diameter is 4.5 mm. The 
strains measured by ISR, the calculated strain components, and the calculated residual 
stresses are recorded in the second row of TABLE 4. Since the depth of the drilling is 
very shallow, only a small portion of the residual stresses is relieved. The measurement 
values should be much smaller than the real values of residual stresses. The measurement 
results show that the residual stresses on the surface are compressive, as found by using a 
resistance strain rosette reported in a previous paper (Li et al, 1997). 

The hole drilling method is under development for residual stress measurements 
by the ISR. The size of the hole, and the distance between the center of the hole and the 
ISR influence the measurement sensitivity. There is no requirement for a center hole 
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drilling. We have applied the ISR to various manufactured samples including aluminum 
tubes (Li, 1996), and surface-shot peened titanium alloy blocks (Li et al, 1997). We are 
currently applying the method to measure residual stresses in welds (Tjhung et al, 1998). 
The ISR results have shown favorable agreement with the results of resistance strain 
rosettes. In addition, we are investigating the ISR technique for analyzing and validating 
analytical models of simulating casting and quenching processes (Li et al, 1998). The 
study aims to optimize the design of the process parameters. As residual stresses are 
minimized, distortion during the machining of the materials will be eliminated or 
reduced. 

6. Conclusions 

Following our previous efforts on developing the interferometric strain rosette technique 
(ISR), we have extended the method into measurement and evaluation of residual 
stresses. The measurement system has been reconstructed as a movable structure. A two- 
step measurement procedure and software have been established. The accuracy of the 
two-step measurement has been evaluated by the uniaxial tests. The maximum zero shift 
was found to be 7 microstrains, and the difference between the theoretical and 
measurement results is less than 6%. Ring-core and hole-drilling methods are under 
development for use with the ISR technique. The feasibility of the two methods has been 
verified. The applicability is being studied and evaluated on various manufactured 
samples. The ISR has the potential to be developed as an accurate method of residual 
stress evaluation. The deployment of the method will enable resolution of many 
challenging problems in mechanics and industry. 
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Abstract 

The application of geometric moire" in large deformation of 3-D models is discussed. 
Different aspects of the method, such as mismatch technique and mechanical 
differentiation, are taken into consideration for the measurement. An application of the 
method is given to the cushion disk of an artificial knee joint in whose axis-symmetric 
cross section a cross specimen grating of 0.5mm pitch was replicated. The analysis 
shows the applicability of the geometric moire\ together with its various approaches, in 
the large deformation measurement giving the whole field quantitative definition. 

1.  Introduction 

1.1 GENERAL PROBLEM 

The experimental techniques have made a great contribution to the analyses of 
mechanical behaviour of components and structures. In particular, the optical methods, 
such as holographic interferometry, moirö and speckle techniques etc., have played a 
very important role in both qualitative and quantitative determination of mechanical 
parameters [1J. However, most of them are limited to the application on the surface of 
models, while the analysis of the internal parts could be needed. Some techniques have 
been proposed by researchers to solve such problem, for instance, the white light 
speckle method where some form of inhomogeneity was formed within a cast block of 
model for interior strain measurement [2]. 

On the other hand the optical methods have been found their applications not only in 
traditional mechanical structures but also in a widespread fields (e.g. in biomechanics) 
where large deformation and non-linearity are present. Some of the optical techniques, 
such as grid analysis [3,4], have played a successful role in the measurements of large 
deformation. 
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This research is aimed to apply geometric moire" in the analysis of an internal section 
of a model with large deformation to obtain directly whole field displacement 
measurement and strain field by means of mechanical differentiation. 

1.2 APPLICATION TO KNEE JOINT 

Arthroprosthesis design is based on the analogy existing between the human joint and 
the mechanical motion system. In general a knee joint is considered as mechanical 
contact structure in which mechanical actions are originated by muscles. 

The first artificial joint was made by substituting a part of the knee with an inert 
material and the results obtained have lead to the utilisation of biocompatible materials. 
Then the total substitution of the human joint rather than some singular parts was 
preferred [5,6,7]. 

According to the mechanical kind of joints the prosthesis are classified (Fig. 1) in: 1) 
constrained prosthesis, where the motion is allowed only in one plane by a joint, 2) 
semi-constrained prosthesis, where the motion is allowed in two planes by a spherical 
joint between the femur and tibia, and 3) un-constrained prosthesis, where there is no 
connections between its components and any kind of motion is allowed. A good shape 
design must assure large stability to this last kind of knee prosthesis, which perfectly 
simulates the human motion of the knee. 

Fig. I: Prosthesis classifications: constrained, semi-constrained and non-constrained prosthesis. 

The artificial knee joint actually used (Fig. 2) is made of an inox steel structure 
inserted into the femur, a polyethylene disk and a tibial metal plate linked to the human 
tibia bone. 

The characteristics of this prosthesis is the presence of the cushion part, the disk, 
actually made of UHMEPE. Here a disk made of a more soft material, the polyurethane, 
is investigated. 

metal femoral component 

fig. 2:  Typical structure of an actual artificial knee joint. 
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2. In-plane geometric Moirl 

2.1. GENERALS 

In-plane moire" is typically carried out by gratings^of equispaced, parallel lines [1]. One 
grating set is applied to a flat surface of the specimen to be analysed, and a second set 
(reference grating) can be put in contact with the specimen grating or more conveniently 
recorded by an image processing system. The gratings can be x- or y- or cross oriented. 

The strain can be determined by using the four derivatives of the fringes in the two 
reference grating directions: 

««-/*-£-.     *„-*-£-.     >V=A,(^f- + ^f) 0) 
where respectively/?,, is the reference grating pitch, Nx and Ny are fringe orders of x and 
y displacements. 

Despite the source of these equations, they are strictly geometric equalities and do 
not require elastic behaviour of the specimen; this allows a wide range of their 
applications. The superposition of specimen gratings and reference gratings can be done 
by digital logical operations of grabbed images by an image processing system [8,9]. 

In relation to the subject of this paper, three aspects of in-plane geometric moire" 
were considered here: (1) large deformation measurement; (2) mismatch method to 
increase (decrease) fringe numbers; (3) mechanical differentiation. 

All these aspects were carried out using an image processing system. 

2.1.1. Large deformation measurements 

The sensitivity of the in-plane geometric moire" is equal to the reference grating pitch p0, 
which is the non-deformed one. However, in the case of large deformation the applied 
grating pitch is relatively high and must be taken into consideration in strain calculation. 

Between two fringes, spaced d, the average tension and compression strains may be 
calculated respectively by [10]: 

Po " Po 
t » ^compression . d-p0 

p d + Po 

2.1.2. Mismatch method for non-uniform deformation 

(2) 

The choice of the grating pitches is always based on the strain range to be measured. For 
a 3-D model the specimen gratings are always replicated during its modelling, thus a 
change of grating pitches is not practicable. In addition, in many cases where the non- 
linear and non-uniform strains are present, such as contact, material discontinuity and 
non-linear materials etc., a single pitch cannot satisfy the measurement of whole field. 

In the case of large deformation, it is difficult to consider an application of very fine 
gratings since the large tension/compression deformation may destroy such fine gratings. 
Moreover, a fine grating may provide the fine measurement in one zone, but becomes 
ineffective or over-effective in other zones. 

The mismatch method, in providing different carrier fringes (tension or compression) 
to different measuring zones, is a very efficient way in the measurement of large and 
non-linear deformation. 

Tu-P14 
P-3 
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The mismatch is carried out by taking some new reference gratings with the pitches 
different from that of original one. If the pitches of these new gratings are greater than 
that of original one, the number of fringes will be increased over the original fringes at 
the zone where the compression deformation goes on, while decreased the tension 
deformation. Inverse effect is present when the pitches of these new gratings are less 
than that of original one. In general, at least two new reference gratings are used, one 
with slightly greater pitch and one with slightly less pitch than that of the original one. If 
the deformation has a very large range, more reference grating with different mismatch 
pitches may be taken to suit each strain level. 

Using the mismatch technique the equations (1) become: 

where &/,/& and äV(/<fy are the fringe derivatives of the mismatch fringes before 
loading, in the x and y displacement. 

2.1.3. Mechanical differentiation 

The moire" method, as many other optical interferometry, provide directly the 
measurement of displacement field, while the structure is characterised by stress 
distribution. Nevertheless, the mechanical differentiation can give proportional strain 
distribution, proportional strain value and, in some cases, particular characteristics, for 
example contact area in contact problems, like in this study. 

The mechanical differentiation is the superposition of two identical moire" patterns, 
one of which is shifted by increments Ax and Ay. In this way, the contour maps AN/Ax, 
ANJAy, AN/Ax and AN/Ay can be obtained. To obtain strains, the basic displacement 
can be written in the form: 

Aux ^poAN»      Auy =poANy (4) 
Then the strain can be defined as: 

ANX AN AW       A;Vy 
<--*-£->    £yy-Po—,    rv*Pol-^ + -£-) (5) 

In practice, mechanical differentiation can be obtained by shifting directly two 
identical deformed grating images without generating ordinary moire" fringes. It should 
be noted that the above relationships are correctly applicable for small strain, i.e. the 
finite increment reasonably represent the true derivatives if the shifts Ax and Ay are 
small. 

2.2. IMAGE PROCESSING 

The specimen gratings need to be grabbed before and after loading. The software 
available to the purpose, IMAGEPRO by CORECO - USA provided the following 
image processing operators: 

1. horizontal and vertical edge filters, to separate the crossed gratings respectively 
into vertical and horizontal lines for superposition of x and y displacement fields; 

2. contrast enhancement operators, such as stretching and equalising, to obtain high 
contrast gratings and fringes (the image processing system also provides the 
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binarization of images which gives images with only two grey levels); 
arithmetic and logical operators to obtain the superposition of two grating 
patterns, for instance, to get average value of two images in each pixel; 
scaling operator to generate mismatch reference gratings reducing or increasing 
the image scale; v 

image shifting for mechanical differentiation carried out by digitally positioning 
the gratings. 

Tu-P14 
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3. Preparation of the specimen analysed and the optic system applied 

130 mm 
In order to evaluate the internal strains of the 
Polyurethane tibial plateau, a 0.5mm pitch grid 
was engraved in a diametrical section of it. The 
elastomeric disk, 10mm thick with a diameter of 
80mm, was made by sequential polymerisation 
of two half of it, casting the resin in a circular 
steel mould. The casting procedure was realised 
in a vacuum oven with controlled temperature 
(60°C). After the polymerisation of the first half 
of the cylinder a master grating was replicated 
onto the flat specimen section by a xerographic 
technique, which was decided to be adopted to 
produce a good quality cross grating. The master grating was drawn by a CAD system 
and printed on a film. After the replication of the grating, the specimen was cast into its 
complete form. 

Three specimens for each of three different ratios of the polyurethane resin to its 
hardener (1:1; 1:0.7; 1:0.5) were produced, plus another one, on whose section a 10 grid 
strain-gauges chain was bonded. 

The mechanical load of 800 N was applied in 100N steps by a steel sphere with a 
diameter of about 130mm, which simulated the femoral component (Fig. 3). The load 
was centrally applied on the diametrical plane of the sphere, then a three-dimensional 
axis-symmetric problem occurred. 

Fig. 3: Mechanical rig 

Polyurethane^^ 

' cross-grating' 

light source 

Fig. 4: In-plane moire" set-up 
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The optical set-up of in-plane geometrical moire" method is shown in Fig. 4. A white 
light was used. A laser light is not necessary for the illumination since it may produce 
unwanted speckles in the specimen surface. By recording and superposing the grating 
patterns before and after loading, some digital imaging operations are carried out to 
obtain the x- and y-displacements and their corresponding strain distributions. 

4.  Results 

The results obtained for the model with a ratio 1:1 of the polyurethane resin to the 
hardener are reported in the following. 

Figs. 5 report for a load of 800N the grating image as grabbed (Fig. 5a) and after it 
was transformed respectively by vertical (Fig. 5b) and horizontal (Fig. 5c) filtering 
provided by the image processing system. 

(b) (c) 
Fig. 5: Gratings imaging and processing at the loading of 800 N 

(a) original; (b) vertical filtering and (c) horizontal filtering. 

The superposition of the deformed and non-deformed gratings were obtained for 
each loading step (100N). The horizontal, ux, and vertical, uy, displacement fringes 
under loading of 800 N are shown respectively in Figs. 6a and 6b. 

(a) (b) 
Fig.6: Displacement fringes at the loading of 800 N: (a) ut; (b) uy 

Fig. 7: Mismatch fringes ofux at the loading of 800 N 

Close to the contact area, very few number of fringes were observed in the x 
displacement field due to its low deformation level. Then a mismatch reference grating 
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with 15% reduction of the non-deformed grating (i.e., po'=0.375 mm) was superposed 
onto the gratings to get more fringes. Fig. 7 gives the result of this operation in the case 
of a 800 N loading for another specimen. 

Based on the above displacement measurement the strain distribution B« and Cyy 
along the different sections have been calculated as reported in Figs. 8, which shows that 
the strain s„ decreases going away from the contact centre, while the maximum strain 
Eyy is located in the middle of the y section as stated in previous work. 

Tu-P14 
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(a) (b) 
Fig. 8: Strain distribution: (a) & (b) £yy 

Maximum average strains and maximum vertical displacements are given in Figs. 9 
for the loads applied. Their behaviours were confirmed by the numerical results 
obtained in other research works under study. 
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Fig. 9: (a) maximum average strains;(b) maximum vertical displacements 
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Fig. 10: Mechanical differentiation fringes ofANJAx with dx™3 mm 
(a)100N; (b)400 N and (c) 800 N. 
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The extension of the contact area is a very important factor in the present analysis. It 
may be measured directly by the image observation and more precisely, by mechanical 
differentiation to obtain the shear component. Figs. 10 show the mechanical 
differentiation fringes respectively for loads of 10JD N, 400N and 800N. These fringes 
represent the AN/Ax component with shifting Ax=3 mm. The contact extension is given 
versus load increasing in Fig. 11. 

200 400 600 
lo«d [N] 

Fig. 11: Contact area extension. 

800 

5. Conclusions 

Geometrical moire" technique was applied to the study of internal large strains of 
transparent models. 

The results obtained for a biomechanical application showed the good feasibility of 
the technique. 

Further researches are in progress on the refinement of the grating, automation of 
stress calculation and study of wear disk contact surface. 

6. References 

[1] AS., Kobayashi & Parks, V.J., Handbook on Experimental Mechanics. Prentice-Hall, Inc., 1987. 
[2] A. Asundi & Chiang , F.P., Applications of the white light Speckle method to interior displacement 

measurement, Journal of Strain Analysis, Vol. 18,No.l, 1983,23-26. 
[3] J. Duprc, F. Bremand & Lagarde, A., Numerical spectral analysis of a grid: Application to strain 

measurements, Optics and Lasers in Engineering, 18, 1993, 159-172. 
[4] H. T. Goldrein, S.J.P. Palmer &. Huntley, J. M., Automated fine grid technique for measurement of large- 

strain deformation maps, Optics and Lasers in Engineering, 23, 1995, 305-318. 
[5] D.D., Auger and Dowson.D., Cushion form bearings for total knee joint replacemnet. Part 1: design, 

friction and lubrification. Proc.Instn. Median. Engrs, Part H, Journal of Engineering in Medicine 
Vol.209, 1995. 

[6] D.D., Auger and Dowson.D., Cushion form bearings for total knee joint replacemnet. Part 2: wear and 
durability. Proc.Instn. Mechan. Engrs, Part H, Journal of Engineering in Medicine, Vol.209, 1995. 

[7] E.G., Little, R.S., Olivito & Surace, L., A numerical analysis of the contact problem of artificial knee 
joints,   Proceedings   of  XXV   AIAS   National   Conference/International   Conference   on   Material 
Engineering, Gallipoli, Italy, 1996. 

[8] A. Asundi and Yung, K.H., Logical moirf and its application. Experimental Mechanics, 31(3), 1991. 
[9] A. Asundi, Computer aided moir6 methods, Optics and Lasers in Engineering, 18, 1993,213-238. 
[10] Bray & Vicentini, V., Meccanica Sperimentale: misure edanalisi delle sollecitaiioni Levrotto&Bella 

Turin, 1975. 



Tu-P16 
p.l 

DEVELOPMENT OF A STEREOSCOPIC OPTICAL STRAIN 

MEASUREMENT TECHNIQUE : APPLICATION OF MAIZE ROOTS 

S. DENIS 
IMS, Universite de Poitiers, CNRS UMR 66 JO 
SP2MI - Teleport 2 - BP 179, 86960 FUTUROSCOPE CEDEX, FRANCE 

F. B REMAND 
IMS, Universite de Poitiers, CNRS UMR 6610 
SP2M1 - Teleport 2 - BP 179, 86960 FUTUROSCOPE CEDEX, FRANCE 

Abstract 

The main goal of this work concerns the experimental measurement of the rigidity 
modulus of a vegetal material in order to numerically simulate the mechanical behavior 
of a maize root system in soil. Due to the complexity of a such material, non-contact and 
non-disturbing optical methods of strain measurement have a big advantage over 
classical extensometers. Among all these techniques, the tracking of two markers 
constitutes the best choice. Since a maize root is not rectilinear, a tension test introduces 
two important perturbations given by the transverse and the out-of plane displacements. 
To avoid this non suitable strains, we have used two CCD cameras allowing the 
determination of the spatial coordinates of the two markers. Then the longitudinal strain 
can be easily extracted. With stress evaluated form a special testing machine, the rigidity 
modulus for three genotypes of maize is finally shown. 

1. Introduction 

Beating down of maize by wind and storms is an accident which causes the destruction 
of the plants. Our common goal with the INRA (National Institute of Agronomic 
Research) is to evaluate the influence of each parameters governing the embedding of 
the root system in soil. Agronomists from INRA (Lusignan, France) are specially 
studying the biological observations (lignin rate...) and some geometrical aspects as 
length, radius of roots... In our side, we carry out experimental analysis on the 
mechanical behavior root system for various maize genotypes. The correlation between 
both approaches will be made by Finite Element Method with a numerical evaluation of 
the mechanical behavior of each genotype [Denis, S. and Bremand, F. 1998]. In a first 
step, the soil is simulated by a stiffness depending on the humidity rate and a linear 
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constitutive law is assumed for this complex material. Furthermore we suppose that 
roots on one inter-node have the same rigidity coefficient (Figure 1). In this paper, we 
present the experimental technique used for the evaluation of this parameter. 

Figure I : (a) maize roots, (b) root system 

A tensile test is performed on a 50 mm long specimen extracted from the more 
rectilinear part of the root. Since this complex material is non-homogeneous with a 
surface who can present some roughness or some important irregularities (Figure 1), 
classical extensometers as strain gauges are not adapted. The choice of optical methods 
of strain measurement appears very important because they perform non contact and 
non-disturbing strain evaluation. Several methods are available as optical diffraction o! 
a laser beam by a grating marked on the surface [Bremand, F. and Lagarde, A., 19S6], 
numerical spectrafanalysis by FFT [Dupre, J.C., et al. 1993] or while light speckle by 
numerical correlation [Sutton, M.A., et al. 1986], but they need either to stick or to 
engrave a grid on the surface which is not possible with maize roots [Denis, S., 1996]. 
To obtain the longitudinal elongation only two points should be identified. These points 
are drawn with black ink. With the help of imaging system, the method consists in 
recording images of the specimen for each loading step [Bremand, F. et al. 1995], Thus, 
the x and y coordinates are obtained by the calculation of the center of gravity of each 

marker. 
During the tests, we have noticed different displacements. The longitudinal one- 

is due to the tensile force, whereas the transverse and the out-of plane displacements 
come from the irregular geometry of maize roots (Denis, S. et al. I99SJ. The latter 
induces variations in the enlargement ratio leading to false strains. To avoid these 
variations, a stereoscopic experimental set-up is used. 
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2. Stereoscopic method for strain evaluation 

In order to quantify the transverse and the out-of plane displacements, two identical 
CCD cameras are used. They are located perpendicularly (Figure 2) in such manner that 
the transverse displacements of one camera corresponds to the out-of plane 
displacements of the other. The physical referential is determined as follows : 

- X-axis is parallel to the line passing by the focal points Ii(-L, L) and I2(-L, -L) 
of each camera, 

- Y-axis goes from cameras to specimen, 
- Z-axis is vertical, 
- the origin O is defined as the intersection of the two optical axis which are 

located at 45° related to Y-axis. 

frame grabber 

T 

Y», 
X 

•• 

m 

* 
CCDl 

• 

CCD2 
"'■ .  ■ .■.-■  - . 

Monitor 
Sg^. 
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Figure 2 : Experimental apparatus using two CCD cameras 

Cameras are adjusting such that the images of the point O should correspond to the 
center (x0, Zo) of each camera (Figure 3). In our case, x0=Zo=256 pixels. The physical 
coordinates (x, y, z) of a point M are obtained by triangulation with the two 
corresponding points Mi and M2 (images of M respectively by CCDl and CCD2). Let 
us call a! and b, the coordinates of Mi and a2 and b2 the coordinates of M2, these 
quantities are expressed in pixels and are obtained from the calculation of the gravity 
center by a classical interpolation [Bremand et al., 1992]. Since the two cameras have 
identical lenses with a focal length f, the same enlargement ratio G can be deduced for 
both cameras. The numerical technique consists in calculating in millimeters the two 
shifts 8, of M| and 82 of M2 related to the center (x0, Zo) of each image. 

The x and y values of M should be firstly obtained from the x-components dx, of 8, 
and the x-components dx2 of 82. Then the third coordinate z of M (Figure 4) can be 
determined from the z-component dzi of d{ (or dz2 of 82). 
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Figure 3 : Schematization of the experimental device 

The two straight lines passing by each focal points I,, I2 and point M intersect each 
optical axis in A( and A2 (Figure 3). The coordinates of these points are : 

A|(Di^jDIV2) 

2     '     2     ' "2 

where the distances D| and D2 are obtained by : 

A ,D,V2       D,VI. 
A,(—=-—, =-—) (1) 

dx|     dx2 

D,      LV2 

f 
(2) 

with the two shifts given by : 

dxi = G (a] - XQ) .  and      dx2 = G (a2 - x0) (3) 

The  x  and  y coordinates of M  can  be  determined  by  the calculation of the 
intersection of the two straight lines (Ah It) and (A2,12). Hence : 

L*f*(dX|+dx2) 

dx,*dx2 + f2 
(4) 

_ L*f*(dX|+dx2)(dX|+f)-2*dxl*L*(dX| *dx2 + f-) 
y (dx,*dx2+f2)(dx,-f) 

(5) 
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The last coordinate z is obtained from x and y. Only one camera is sufficient to 
determine z. For example, we use the CCD1 camera (Figure 4). 

Lens 

So one can write 

where 

n •    f 
Figure 4 : Determination of the third coordinate z 

ei 

n = Mi,=V(x-L)2+(y+L)2 

(6) 

(7) 
dz, = G (b, - ZQ) 

Now the knowledge of the three-dimensional coordinates leads to longitudinal strain 
ezz by deriving the displacements (ux,Uy,uz). 

ezz=r(2*uz.z + uL + uy.2 + uz.z) 'y.z (8) 

Usually we consider that the error made on the location of one marker is the tenth of 
pixel. For our experiments (with L = 370 mm and f = 50 mm), an accuracy around one 
hundredth of millimeter has been obtained for each coordinate. As the distance between 
the two points is around 5 mm, the strain accuracy is estimated to 10'' which is more 
than enough for our purpose. 

3. Application 

For the measurement of the rigidity modulus of each root, our colleagues from INRA 
have chosen three genotypes (5, 7 and 16) of maize relative to their very different 
agronomic behavior. For each variety inter-nodes 6, 7, 8 (when existing) have been 
studied (Figure 1). Roots have been selected with respect to some important geometrical 
conditions. First of all we must chose the part of the root close to the stem because it is 
the more rectilinear. Furthermore its length should be at least 50 mm and its section the 
more possible constant. In fact, if our roots are too curved, we do not realize a pure 
tensile test but a combined tension bending test which does not correctly solicit the 
rigidity modulus. 
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3.1. EXPERIMENTAL APPARATUS 

In order to perform these tests, a specially designed low charge testing machine is used. 
Its stepper motor is controlled by a PC. The loading is made at imposed displacement 
speed (1 mm/min) and is recording by an acquisition card at regular interval, A, = 2 s, 
chosen by user (Figure 5). Stress a is obtained in dividing the load by the section area. 
A second PC is charged of the image acquisition. It contains a frame grabber Matrox 
PIP 1024 (512*512 pixels, 8 bits). This card receives pictures of the two CCD cameras 

with the same time interval A, = 2 s. 

Figure 5 : View of testing machine 

3.2. RESULTS 

A hundred tests have been performed. For each of them, we have plotted the stress a 
versus the longitudinal strain e. We have chosen only two representative tests which are 
presented on Figure 6. We have also plotted the curves a = f(£aJ1) and o = f( £„.,,,,), where 
e and e..,,, are respectively the longitudinal strains obtained by CCD1 and CCD2. Due 
to the nature of maize roots (non homogeneous...), experimental curves are not exactly 
linear. We notice, Figure 6, in some cases, that the longitudinal strains obtained by one 
of the two cameras are irregular and negative. It is the result of out-plane displacements 
where specimen moves to opposite direction from CCD camera. Since curves obtained 
by CCD1 and CCD2 are very different a stereoscopic method for the study of maize 
roots is absolutely required. It gives a curve obtained from a complex function of CCD1 
and CCD2 signals (Figure 6b and equation (8)), but does not lead to the average 
between CCD1 and CCD2 as shown on Figure 6a. We can also remark that the new 
curve is smoother than CCD1 and CCD2 curves. 
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In order to get the rigidity modulus for each curve a = f(e), a linear interpolation 
passing through origin is calculated by a least square method consisting in minimizing 
the normal distance between experimental results and their Fitting curve. We have sum 
up rigidity modulus on Figure 7 obtained from the slope : 
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Figure 7 : rigidity modulus for each inter-node of each genotype 
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For each inter-node of each variety, we have a disparity in the rigidity modulus due 
to the nature of material. In fact, biological and geometrical studies, realized in parallel 
by agronomists from INRA such as lignin rate or radius of roots, also show disparities in 
results. That is why the median of rigidity modulus of each inter-node will be used in 
order to numerically simulate the mechanical behavior of a maize root system in soil. 

4. Conclusion 

The utilization of a non contact and ä non-disturbing optical method allows us to test 
vegetal materials. In fact, the study on the mechanical behavior of a maize root system 
have been required the tracking of two markers associated with a stereoscopic method to 
determine the three spatial coordinates of the points for each loading step. We obtain 
coordinates with an accuracy around 10'2 mm and longitudinal strain accuracy is 
estimated to 10'\ 

Now a mesh of a maize plant, stem and roots, by finite element method is realized 
according to geometrical data and rigidity modulus of each genotype. A root is 
simulated by around 50 cylindrical segments with a decreasing radius. The 
determination of the influence of each parameter is in progress. 
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Abstract - The analyzed material is a vinylester matrix reinforced 
by randomly oriented continuous fibers. The degradation mechanisms are 
determined from tensile tests on coupons and SEM observations. Notched 
specimens and plates with central holes are then studied when loaded m 
remote uniaxial tension. Cross-shaped specimens are then studied. The evo- 
lution of the strain field is computed through a correlation technique in 
white light. In particular, the initiation location can be measured. 

1. Introduction 

The aim of this study is first to evaluate the effect of the fiber orientation 
of a composite material made by a Resin Transfer Molding (RTM) tech- 
nique. Second, the notch sensitivity of this material is assessed for speci- 
mens loaded along one and two directions. The strain fields are evaluated 
by using a correlation technique. The initiation sites are determined by this 
technique coupled with a finite element computation. 

2. Studied Material 

The composite material is made of a vinylester matrix reinforced by contin- 
uous E glass fibers (see Fig. 1). The RTM process induces a random in-plane 
fiber bundle orientation (Fig. 2). The fiber volume fraction is equal to 30%. 
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Figure 1.    Surface of the composite. 
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3.   Uniaxial Loading 

3.1.   COUPONS 

Tensile tests have been carried out on 25 x 3 x 150 mm3 coupons (Fig. 3). 
To analyze the effect of fiber orientation, the coupons were cut in two 
perpendicular directions. There is no effect on the stress/strain response of 
the composite [1]. A microscopic analysis of the degradation mechanisms 
shows multiple matrix cracks (Fig. 4). Furthermore, single fiber pull-out has 
been observed. More importantly, fiber bundle pull-out is systematically 
present at the fracture surface (Fig. 5). The fiber bundle behaves like a 
fiber with a large cross-sectional area rather than the sum of single fibers 

of small diameters. 
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3.2.   PLATES WITH NOTCHES OR HOLES 

A series of experiments has been carried out on plates with holes (of radius 
R) and doubled edge-notched specimens (the total notch size is 2a). The 
total width L is identical to that of the coupons. Two ratios 2a/L and 2R/L 
have been considered: 1/2 and 1/4. These specimens are loaded in remote 
uniaxial tension. To compare the load levels of different configurations, the 
net section stress is computed. Figure 6 shows the net section stress vs. the 
strain measured in the vicinity of a notch by a 1 mm2 strain gauge. The 
shape of the curve is comparable to that obtained with coupons (Fig. 3). 
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Figure 6.    Tensile curve of a notched spec- Figure  7.       Net section stress at failure 
imen (2a/L = 0.25). The arrow shows the for different orientations (0°: filled symbols, 
level corresponding to the strain measure- 90°: open symbols) and different types of 
ments of Fig. 9.a. specimens. 

Figure 7 shows the net section stress levels at failure for different spec- 
imens. One can see a scatter for all types of specimens. This scatter is 
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probably linked to the randomness of the bundle failure stress and orienta- 
tion (Fig. 5). It is worth noting that the stress levels cannot be distinguished 
within each scatter. Furthermore, the effect of orientation is negligible. All 
these results tend to show that there is no influence of the presence of 
stress concentrators on the net section stress level at failure. Therefore the 
material is notch-insensitive in 'uniaxial' tension. 

Figure 8 shows various shapes of the fracture surface. It can be noted 
that there is always a shear-type of failure (with an angle of 45° wrt. the 
loading direction). However sometimes a tensile-type of failure can be ob- 
served°(perpendicular to the loading direction). In the following, the initi- 
ation sites will be determined by using the measured strain field through a 

correlation technique. 

Figure 8.    Examples of fracture surfaces. 

3.3.   CORRELATION TECHNIQUE 

To locate the initiation site(s), the strain field is evaluated during the ex- 
periment. The specimen is polished and then coated by a random black and 
white pattern. By using a fixed CCD camera, pictures at different stages 
are recorded. The in-plane displacement map is computed by using a cor- 
relation technique between an initial picture (with no applied load) and a 
subsequent one (when the load is applied). This technique has been applied 
to different situations [2, 3, 4] even in the presence of finite strains [5]. 

The specimen is divided into a regular array of zones (cells), the size 
of which is equal to 32 x 32 pixel. The displacement vector is obtained 
by maximizing a correlation function between corresponding cells of the 
two pictures. This cross-correlation is computed in the Fourier space. A 
local parabolic interpolation about the peak allows a sub-pixel evaluation 
of its position. The second image is then shifted by the previous computed 
displacement to get the next value. An iterative scheme is used to get an 
auto-correlation function. With two or three iterations on 32 x 32 pixel 
cells  an accuracy of 3/100-th of pixel is obtained [6]. The main advantages 
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of this technique is its insensitivity to lightning variations and lack of focus. 
Its is well suited for small strain evaluations (of the order of 5% so that the 
hypothesis of solid displacement of the cells is fulfilled). To compute the 
strain field, the displacement map is prescribed on the same Finite Element 
(FE) mesh as the one used in the image analysis. This procedure allows 
a direct comparison between experiments and model predictions (usually 
obtained by non-linear FE analyses). The commercial FE code ABAQUS 
[7] has been used in the present study. 

3.4.  INITIATION SITE 

The evolution of the strain field as a function of the load level is obtained by 
using the above-described method. In particular, the macrocrack initiation 
locus can be observed. In a double edge-notched specimen, the initiation 
mechanism is of shear nature (even though another tensile macrocrack is 
forming with some delay: Fig. 9.a). The two directions are also present 
on the fracture surface (Fig. 9.b). Figure 9.a shows that the longitudinal 
strains start to localize in a 45° direction. The corresponding levels are of 
the order of the failure strains given in Fig. 6. Therefore, this level will be 
referred to as initiation. In Fig. 6, the stress level at 'initiation' is shown: 
it occurs prior to reaching the peak level. 
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Figure 9.    Strain field at 'initiation' (a), specimen surface after failure (b). 



4.   Biaxial Loading 

4.1.   SPECIMEN GEOMETRY AND EXPERIMENT 

To investigate the effect of biaxial loading conditions, a cross-shaped spec- 
imen has been designed (Fig. 10). The ligament length is equal to 36.5 mm 
and the connecting radius is equal to 5 mm. This specimen is mounted in 
a triaxial testing machine ASTREE equipped with six servohydrauhc actu- 
ators [8] (jointly developed by LMT-Cachan and Schenck AG, Darmstadt, 
Germany). To avoid the coupling between the different loading axes, the ac- 
tuators are linked two by two along the three axes so that the central point 
of the specimen is motionless. The specimen fixed in the grips is shown in 
Fig. 11: four out of six servohydrauhc actuators are used. 

R = 5 mm 

Figure 10.    Specimen geometry. 

Figure 11.      Specimen in the testing ma- 
chine ASTREE. 

4.2.  TEST RESULTS 

The testing machine allows non-proportional load histories: a squared load- 
ing cycle has been prescribed (Fig. 12). The effect of non-proportionality 
is a motion of the stress concentration zone along the connecting radius. 
The load level at failure (12 kN) corresponds to a net section stress of 101 
MPa. This stress level is close to those observed previously (Fig. 7). This 
result seems to indicate that the notch-insensitivity is also observed for a 

non-proportional load history. 
The broken specimen is shown in Fig. 13. The correlation technique is 

used to predict the initiation sites. To determine the location, it is assumed 
that a strain greater than 1.7% is likely to produce macrocracking (this 
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strain level corresponds to the average failure strain of coupons). The force 
level for the present analysis is such that Fx = F2 = 9.5 kN. For this situ- 
ation the strain field en and e22 is symmetrical about the first and second 
bisector. Any lack of symmetry is a probable indication of initiation. The 
longitudinal strains eu and e22 determined from the displacement measure- 
ments are plotted in Fig. 14. It can be noticed that the strain levels are 
higher for the strains en than those of the strains e22. Furthermore, when 
the strains eu are analyzed, one can see that the highest levels are almost 
identical on all stress concentration zones. This leads us to assume that 
initiation occurred independently on all sides along the 1-direction for a 

load level of the order of 9.5 kN. 

5.   Summary 

The results presented herein show that the overall composite behavior is 
isotropic. A scatter in failure stress has been observed for different specimen 
geometries and configurations. It is related to a bundle failure. A correla- 
tion technique in white light has been used to predict the initiation site(s). 
This method is applicable even in the presence of macrocracks. In all cases 
the initiation is predominantly of shear nature, even though tensile initi- 
ation may be present simultaneously. Lastly, in the experiments reported 
in this paper, it is shown that the composite material is notch insensitive 
when the net section stresses at failure are compared for notched specimens, 
plates with central holes and cross-shaped specimens. These experimental 
results will allow us to develop, identify and discriminate different mechan- 
ical models describing the behavior of these composites with a randomly 
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Abstract : Validation of models introduced to simulate the thermo-mechanical 
consequences of phase transformations in the Heat Affected Zone (H.A.Z.) during 
welding is a difficult task because of the multiple effects that take place such as heat 
transfer and the convection of the melting zone. There is also a tridimensionnality 
induced by the geometry of the pieces to be welded and by the melting zone and 
displacement of the heat source. 
This work treats the development of a specific device to validate thermo-mechanical 
models describing the H.A.Z.. All the « parasitic phenomena » that occur in reality do 
not take place under the conditions for the wanted validation : there is no melting zone 
and the problem is axisymmetric. However, all thermo-mechanical consequences of 
phase transformations occur. Many measurements are taken to validate each step of the 
simulations : thermal, metallurgical and mechanical. 
An original software for the strain field measurement has been developed to high 
temperature measurement. This software used the correlation principle and is limited 
nowadays to the plane surface measurement. This method is particularly well adapted to 
measure small deformations with high gradients. This new high temperature 
measurement method without contact can be another tool for validating numerical 
simulations of the Heat Affected Zone during welding. 

1. Introduction 

The prediction of residual stresses is a particularly difficult task in the case of welding, 
where structural transformations take place. In order to validate the models generally 
used to simulate the thermo-mechanical consequences of phase transformations 
(difference of volume of the phases and dilatation coefficients, transformation plasticity, 
hardening recovery and multiphased behaviour), a large program is investigated by 
Electncite de France and the Bureau de Contröle des Chaudieres nucleaires on a carbon 
manganese steel (16MND5 in the AFNOR norm). This program is divided into two 



main parts as described by Cavallo (1997-1 and II). The first one concerns the 
identification and validation of each model on specimens without thermal gradients. The 
second one concerns the validation on specimens with thermal gradients and structural 
effects. 

This paper only deals with the second part. A specific device has been developed and 
realised. It consists of applying an axisymmetric thermal load and in acquiring the 
maximum quantity of measurements used to validate numerical simulations. To avoid 
the problems induced by the melting zone and the tridimensionnality due to the 
displacement of the heat source and specimen geometry which occur in reality, the 
analysis is limited to the Heat Affected Zone (H.A.Z.), which is the zone where 
structural transformations happen in a solid state, and the thermal load and the geometry 
are chosen to be axisymmetric. By keeping only the creation of H.A.Z. phenomena, even 
if the thermal cycles are slower that the welding ones, the model's validation taking into 
account phase transformations becomes easier. 
To validate strain calculations, a new application of the correlation method has been 
developed. It permits to measure the plane strain load of the front side of the specimen 
which is submitted to a high temperature load. 
In this paper, the device and the correlation method results are presented. 

2. Experimental device 

2.1.DISK SIZE DEFINITION 

The thermal load is chosen to produce a totally martensitic transformation during the 
cooling process in the centre of the disk and through its thickness. Therefore? the 
maximum temperature must be higher than 850°C which is the temperature of the end of 
austenization for the considered steel, and every point of the disk which maximum 
temperature is higher than 750°C must have a minimum cooling rate of 10°C/s between 
850°C and 390°C (temperature of the beginning of the martensitic transformation). 
Knowing that the thermal load is applying by a CO, laser which produces a flow 
assumed to be axisymmetric and have a defined form, numerical simulations are 
performed to estimate the thickness and the diameter of the disk and to produce 
measurable strains and stresses. Then, the disk is defined to be 5 millimetres thick and to 
have a diameter of 160 millimetres. 

2.2.DISK ELABORATION 

Dilatometry tests have shown that internal stresses take place in the steel because of 
lamination, therefore the samples are taken to be larger than the defined geometry. They 
are submitted to a preliminary thermal cycle to relax internal stresses. 
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Disk are manufactured, rectified and polished to reduce the hardening of the disk sides 
as much as possible. 

2.3.BOUNDARY CONDITIONS 

The disk support is made of three alumina shafts which extremities are pointed to reduce 
the contact surface. The shafts are placed to be in contact with the parts of the disk 
which are assumed to stay cold. All the surfaces of the disk are supposed to be cooled by 
free convection and radiation. 

2.4.MEASUREMENT METHODS 

2.4.1. Temperature measuremen ts 
Temperature measurements are done on both faces of the disk. 
On the side submitted to the thermal flow (front side), the temperature is measured by an 
infrared camera and pyrometers which permit measurements without contacting the 
disk. On the back side, thermocouples 78 |am diameter type K are welded every two 
millimetres along a diameter. 
The number and the positions of the thermocouples have been determined to allow the 
use of the inverse method as described in Blanc (1998) to estimate the thermal load in 
the entire specimen. The measurements done on the front side of the disk which are less 
precise, are only made to verify the thermal load estimated. 

2.4.2.Displacement measurements 
Three displacement sensors LVDT type are equally distributed around the circumference 
(3x120°) to measure the specimen's diameter variation and verify the axisymetrie of the 
thermal load without preventing the free dilatation of the disk. 
Seven other sensors type LVDT measure the axial displacement of the inferior side 
along a diameter every 5 millimetres. 

2.4.3.« Post-mortem » measurements 
Final shapes of the two sides are measured by LVDT sensors along four diameters. 
Residual stresses are measured at the Ecole Nationale Superieure des Arts et Metiers 
(ENSAM France) by X-ray diffraction after the test and before the microstructure 
analyses. Finally, the disk is divided into two parts. It is polished and chemically 
attacked. Then, microstructure observations are made, completed by micro-hardness and 
hardness measurements. 



2.4.4. Plane strain measurements on the front side by the correlation method 
Correlation method The correlation method of numerical images is used to estimate the 
plane displacement of a fuzzy motif« speckle type » deposed on the disk surface. 
This method consists in taking pictures of the specimen before and after it is submitted 
to the thermal load, and estimating the displacement of each pixel of the picture between 
the two states using the SIFASOFT 3.0 code developed by the Laboratoire de 
mecanique des solides of INSA Lyon (see Mguil 1997). Knowing the displacements of 
the points of the surface, deformations can be estimated using interpolation. 

Pattern definition The correlation method requires a special equipment and few 
precautions. The analysed picture must have the most random aspect as possible : each 
pattern of the image must be different from each other. Usually, the speckle aspect is 
obtained by pulverisation of white and black painting. In our case, the pattern must be 
high temperature resistant, permit the absorption of the laser beam, and provide the 
lamination. The fuzzy pattern chose is composed of a first fine layer of graphite powder 
and a second one of bore nitrate. 

Experimental apparatus The pictures are obtained with a numeric camera Kodak Mega 
Plus (1024*1024 pixels). This high definition camera with square contiguous pixels is 
linked to an acquisition card Matrox PIP 1280 connected by a PC 486 DX50. The axial 
displacement is not taken into account by the use of a telecentric lens Melles Griot, 
Invaritar Pin 59LGL 428 model. 

2.5.DISK POSITIONNING 

A preliminary test is done on a A33 disk, 1.5 millimetre thick. In this test, differential 
thermocouples are welded on the back side of the disk. Those thermocouples directly 
measure the difference of temperature between each couple of points located 
symmetrically from the centre. Numerically controlled machine allowed in plane disk 
positioning in order to assure that the centre of the disk lies in the axis of the laser, 
providing this way an axisymmetric heating. 

2.6. SCHEME OF THE DEVICE 

The experimental device permits the application of an axisymmetric heating load on the 
front side of the disk. Temperature measurements are done to determine the thermal load 
in the whole specimen. Deformations are measured during the test on the back side of 
the specimen. The final deformations of two faces are measured as well as the in-plane 
deformations of the front side and the superficial residual stresses. Final microstrucrures 
are determined by microstructure analyses and hardness measurements. 
A simplified scheme of the device is presented on Figure I. 
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3. Results 

Only few results are presented here to discuss more about the correlation method results. 
The maximum temperature reached during the test is 950°C on the front side of the disk. 
Microstructure analyses and hardness measurements are taken to estimate the 
metallurgical phases in the different zones of the disk. A diagram of the different zones 
is presented figure 6. Three particularly zones are determined : a totally austenized one 
during the heating (1), a partially transformed (2) one and the non thermally affected one 
(3). 
The displacements measured on the back side on the specimen present the same 
evolution in different proportions. To facilitate its analysis, only one curve is plotted and 
its evolution is compared to that of the temperature (Figure 3) for two points placed at 
10 millimetres from the centre of the disk (which is a point of the H.A.Z.). The disk is 
heated by the front side. It is noticed that the phase transformations occurring during the 
cooling do not produce important displacements and therefore produce stresses. 



BOO 

~   400 

i   200 

§.-200 

<S -400 

■o -600 

-800 

_-_£ 

martensite 
bainite 
ferrite 

martensite 
bainite 

Figure 2 : Material zones 

— - temperature 

 axial displacement 

200 250 

time (s) 

Figure 3 : Temperature and displacement measured at 10 mm from the centre on the back side 

Figure 4 presents the main directions estimated by the correlation method on the front 
side of the disk. The grey levels and the crosses represent the direction of the main 
deformation : they show the strain load is axisymmetric. The Figures 5 shows the loads 
of the plane main strains. Main strain eu and e^ are estimated to be equal to the 
circonferential and radial ones because of the principle directions. 

* 
All the measurements done enable to validate each step of the calculation : thermal, 
metallurgical and mechanical (displacements, strains and stresses). 
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Figure 3 :  View of the main directions 
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Figure 4 : Plane main strains 



4. Conclusion 

The experimental developed permits the application of an axisymmetric thermal load on 
a disk to measure : 
- during the test, temperature and axial displacements along a diameter of the back side 
of the disk 
- after the test, residual stresses, microstructures and final geometry and the residual 
plane strains on the front side by a new use of the correlation method 
All of these measurements permit the validation of each calculation step and particularly 
the capacities of codes to estimate residual strains and stresses in the case of phase 
transformations. This test can also be used with various loads corresponding to the 
thickness of the disk and the power of the laser. H.A.Z. gradients can also be reproduced 
and multicycles can be applied as in the H.A.Z. to validate the stresses relaxation 
estimated by models. 
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1. Introduction 

Investigation of tribological phenomena such as friction, wear and fretting fatigue is 
important in evaluating the reliability and safety of structures and mechanical 
components. In investigating these phenomena, though, it is often difficult to estimate 
physical parameters such as real contact area, friction coefficient, and contact stress 
distribution, because of the lack of robust experimental methods. Yet most tribological 
phenomena are usually accompanied with the generation of heat due to either friction- 
induced heat flux or plastic deformation at the contact surface. Small temperature 
changes arising from the thermoelastic effect are also associated with cyclic contact 
stress and strain fields. Thus measuring near-surface temperature fields offers an 
encouraging approach for characterizing the mechanics and physics of tribological 
phenomena. This paper will describe results from several experimental investigations of 
contact problems through the use of infrared thermography. First, a new technique 
using infrared thermography combined with infrared-transmitting materials is proposed 
for direct monitoring of the surface temperature of two contacting solids. This 
technique is applied to the factional temperature measurement on the contact surface 
under dry sliding conditions, as well as the contact stress measurement based on 
thermoelasticity. Further a newly available infrared thermographic system is used to 
characterize the near-surface conditions associated with fretting contact. 
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2. Tribological Measurement Using Infrared Transmitting Solid 

Consider a contact problem, in which a ball is in contact with a disk, as illustrated in 
figure 1. When an infrared transmitting solid is employed as the disk material, the 
distribution of the infrared energy emitted from the contact surface can be measured by 
thermography since the infrared radiation generated at the contact surface passes 
through the infrared transmitting disk with a small amount of absorption and scatter. 
Therefore the temperature distribution on the contact surface of the ball can be 
visualized by thermography through the infrared transmitting disk. This enables us to 
continuously monitor tribological parameters, such as factional temperature rise and the 
shape and size of the contact area, during the processes of friction and wear [1]. Further, 
the contact stress field can be measured directly using an infrared stress measurement 
system based on the thermoelastic effect [2]. 

Infrared Thermography 

Load 

^ Ball 
Infrared Transmitting Disk 

Figure I. Thermographical measurement of contact surface using infrared transmitting materials. 

2.1 MEASUREMENT OF DRY SLIDING CONTACT TEMPERATURE 

Contact temperature distribution was measured under dry sliding contact using a pin-on- 
disk type testing system. A cylindrical pin with a spherical contact surface was brought 
into contact with the rotating disk and loaded. Then the temperature distribution on the 
contact surface was measured by infrared thermography. Figure 2 is an example of the 
thermal images, which shows steady state temperature distributions on the contact 
surface of the plastic pin sliding against an alumina ceramic disk, taken for several 
combinations of the sliding velocity and the load. The plastic pin was made by 
machining a PEEK (polyetheretherketone) rod. The curvature of the spherical contact 
surface, R, was 25mm. PTFE (polytetrafluoroethylene) was coated on the contact 
surface of the alumina disk to prevent the pin from excessive wear. Scanning infrared 
thermography with a magnification lens was employed in this experiment. The sliding 
direction is indicated by the arrow in the figure. Ar^, v, a and W are the maximum 
value of the factional temperature rise, the sliding velocity, radius of contact area and 
the applied load, respectively. The circle in the figure shows the theoretical contact area, 
which is calculated by Hertz theory [3]. It is seen from figure 2 that a discrete 
temperature rise is observed in a restricted area with a maximum temperature rise at the 
center of the area. The area is circular in shape for low sliding velocity, but changes into 
elliptical for a higher sliding velocity. The length of the minor axis of the ellipsoidal 
high temperature area is in a good accordance with the diameter of the theoretical 
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Figure 2. Temperature images of contact surface measured by infrared thermograph/. 

contact area, which is indicated by the 
circle in figure 2.   It is found that the 
contact area is accurately analyzed from 
the thermal images. 
The observed temperature distribution 
along the minor axis of the elliptical 
high temperature area normalized with 
the maximum temperature rise ATmax 

was compared with the contact pressure 
distribution.  The values of normalized 
temperature     rise,     AT/AT^,     and 
normalized contact pressure, p/pm3X,' are 
plotted along the normalized distance 
from the center of the contact surface, 
x/a, in figure 3, when the load and the sliding velocity were selected as fF=5.88N and 
v=0.2m/s, respectively. The contact pressure p and the maximum contact pressure p^ 
were obtained from Hertz theory. It is found from the figure that the AT/ AT^ versus 
x/a relation agrees quite well with the p/pmsx versus x/a relation. This fact may indicate 
that the temperature distribution on the sliding contact surface is controlled mainly by 
the heat generation rate, which is in proportion to the product of the friction coefficient, 
the contact pressure and the sliding velocity. 

2.2 CONTACT STRESS MEASUREMENT BASED ON THERMOELASTICITY 

Consider a spherical contact under cyclic compressive load, in which an infrared 
transmitting lens with spherical convex surface is in contact with a plate sample as 
shown in figure 4. The thermoelastic temperature change {AT) due to the cyclic stress 
on the contact surface of the plate can be measured by differential thermography, since 
the infrared emission from the contact surface passes through the infrared transmitting 
lens. The range in sum of the principal stresses (Aa) is determined by a relation of Acs = 
-kAT, where £ is a thermoelastic constant. The load signal was monitored by a load cell 
and was employed as the reference signal for differential thermography. A spacer ring 
for magnification was mounted for the measurement of the stress distribution in a small 
area. The imaging area was 8.7mm square and the spatial resolution of the stress 
measurement was 70pm. Sapphire was chosen as the infrared transmitting lens, because 



T. SAKAGAMI, K. OGURA, S. KUBO and T. N. FARRIS 

Camera 
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Generator 

Dynamic 
Strain 
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Figure 4. Schematic illustration of apparatus used for contact stress measurement. 

it transmits infrared well in the 3-5jim range which is the sensible range for the LnSb 
infrared sensor used in the thermography system. 
Stresses caused by spherical Hertz contact were measured for several kinds of 
commercially available plastics. A flat plate sample (15mm X 15mm, 1.6mm in 
thickness) was mounted on the loading stage and was brought into contact with a 
sapphire convex lens that has a spherical contact surface with a radius of curvature of 
150mm. Sand blasting was done on the contact surface of the plastic sample to prevent 
reflections and to obtain high emissivity. Cyclic compressive loads (45Hz) were applied 
in several combinations of mean and amplitude values. In this paper, polypropylene is 
selected as the flat plate sample and the analytical and experimental results obtained for 
three loading conditions are compared. Table 1 describes the loads and Hertz theory 
predictions for these cases. 

Table I. Loading conditions and ranges in sums of principal stresses by Hertz theory. 

Exp. No Applied load P (N) o™. (mm) H™. (mm) Aa», (MPa) Aa, (MPa) 

A7-09 29.0 ±11.8 1.17 1.56 14.1 5.4 

A7-11 29.0 ±19.9 0.95 1.65 18.6 9.7 

A7-19 45.8^=11.7 1.47 1.75 12.9 3.8 

Theoretical analysis for the contact area and 
contact stress distribution was done based on 
Hertz theory for spherical contact [2,3]. 
Distributions of ACT were calculated for the 
loading conditions shown in Table 1, and 
plotted in figure 5. Oma. and amin are the radius 
of the contact area at maximum and minimum 
compressive loads in the cycle, respectively. It 
is found that Aa shows an axisymmetric 
distribution, where ACT is increasing from its 
central value ACT0 up to the maximum value 
Aam3X at r=amm, then ACT is decreasing to zero 
at r= amax. 

_' 20.00 

E  < 

•2 0 2 

Distance from Center of Contact Area 
r(mm) 

Figure 5. Distribution of range in sum of 

principal stresses by Hertz theory. 
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(a)A7-09 P=29.0±11.8(N)      (b)A7-ll P=29.0±19.9(N)       (c).47-19 P=45.8±11.7(N) 

Figure 6. Images of contact stress distributions for Hertz contact between polypropylene sheet and 
sapphire convex lens obtained by infrared stress measurement system. 

The contact stress distributions represented 20000 
by the distribution of the intensity AF of 
infrared emission from the contact surface 
due to the thermoelastic effect are shown in 
figure 6. The circles indicate the maximum 
and rninimurn contact areas. Line profiles 
obtained along the lines x-x in figure 6 are 
plotted in figure 7. An excellent 
correspondence is found between the contact 
stress distributions measured by the infrared 
system and those obtained by Hertz theory. 
AV is increasing from the center of the 

contact area up to the maximum value at 
'"=amin, then AFis decreasing to near zero at 
r= am3X.     Figures 5 and 7 show that a 
comparison for the magnitude of Aa can be made among different loading conditions. 
The asymmetric peaks in figure 7 are probably caused by inhomogeneous geometry of 
the surface in contact. Calibrations will be needed to obtain absolute values of contact 
stresses. The calibrations should involve reliable values of the thermal conduction from 
the plastic sample to the sapphire lens, the infrared transmittance in the sapphire lens, 
and the thermoelastic constant of the plastic sample. 

3. Evaluation of Fretting Stresses through Full-Field Temperature Measurements 

It is very important to analyze the mechanics of crack nucleation under the influence of 
fretting to secure the reliability and the safety of the any clamped components subjected 
to vibrations or oscillatory loading such as riveted lap joints and turbine blades. 
Mechanism of crack nucleation under fretting contact is thought to be associated with 
the near-surface tangential stress generated by the interfacial frictional traction and the 
applied bulk load. Computational evaluations [4] showed the presence of a tensile peak 
in the tangential stress at the trailing edge of contact, where most of the fretting fatigue 
cracks nucleate in the experiments. The focus of the present study is to obtain 
experimental results capturing the evolution of friction and characterizing the stress 
field under fretting conditions. A newly developed multi-element infrared camera was 
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employed to measure near-surface 
temperature distribution due to both 
frictional heating and thermoelastic effects 
under fretting condition [5]. 

3.1 EXPERIMENTAL SETUP 

A   schematic   of fretting  contact  and   a 
photograph of the experimental setup are 
shown in figure 8. Temperature distribution 
was  examined  for 2024-T351   aluminum 
specimen and cylindrical pads.   Cylindrical 
pads     with    the    curvature    radius    R 
(/?= 178mm) were brought into contact to the 
specimen   and   applied   normal   load   P 
(/>=6.41kN).      A   cyclic   bulk   load   with 
amplitude, AL (AZ.= 16.1kN), fully-reversed 
in tension and compression, was applied to 
the specimen using a servo-hydraulic load 
frame.   Then fretting contact between the 
specimen and pads was induced due to the 
oscillatory tangential load AQ. 
The temperature distribution on the side 
surface  of the  specimen  and pads  were 
measured   by   the   high   speed   and   high 
resolution infrared thermography with an InSb focal plane array to convert thermal 
radiation into temperature values with a maximum sensitivity of 0.025 K.    A thin 
coating of flat black paint was applied to the exposed surfaces of the pads and specimen 
to increase the emissivity of the metallic surfaces.   Thin reference lines were etched 
mechanically on the exposed faces of both the pads and specimen to mark the centerline 
of contact.   A 2024-T3 aluminum plate with an E-type thermocouples was used to 
obtain a calibration relation between infrared intensity and temperature.   Temperature 
reading from the thermocouples was correlated with the infrared intensity value near by 
the thermocouple measured by thermography. A fretting experiment was conducted at a 
frequency of 2 Hz under fully-reversed loading conditions 

Figure 8. Schematic of fretting contact and 
photograph of fretting fatigue test fixture. 

3.2 EXPERIMENTAL RESULTS 

Ten frames per cycle (20 Hz sampling rate) were captured for the first 150 cycles of the 
test, with subsequent images taken at cycles of 1000, 2000, 3000 and 4000. Infrared 
intensity data were converted to temperature data using the calibration relation and then 
filtered using a pixel-wise adaptive Wiener method. 
Figures 9 and 10 show sequential temperature images taken at the 16th loading cycle 
and the 151st loading cycle, respectively, in the fretting experiment. The imaging area 
around the interface of the right pad and the specimen is indicated by the shaded area in 
figure 11.  In figures 9 and 10, the top row of images shows temperature images during 
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Figure 9. Sequence of thermal images near contact surface taken at the 16th loading cycle. 

, Specimen 

Right Pad 

/£_ =0.3' ■^rai/IM=0.8^BES£/£_x=l IBHÜ/i_=0.8^«i;i„ =0.3 
Figure 10. Sequence of thermal images near contact surface taken at the 151st loading cycle. 

the compressive bulk loading in the loading cycle 
(Z<0).  Conversely, the lower row of images shows 
temperature images during the tensile bulk loading 
in the loading cycle (Z>0).    The gray scale bar 
indicates     temperature     changes     from     room 
temperature. The horizontal bright line on the pad, 
found in the temperature images, is caused by the 
mechanically etched mark indicating the nominal 
center of contact. 
It  is  seen  from  figure  9 that the  temperature 
distribution changes at the same frequency as that of 
the applied bulk load waveform on the specimen 
surface. This implies that the temperature change is 
caused by the thermoelastic effect induced by the 
cyclic bulk loading. The temperature distributions due to the thermoelasticity are nearly 
homogeneous in the entire specimen, and this indicates that the stress distribution in the 
specimen is also homogeneous at this stage. On the other hand, a localized near-surface 
heating spanning the width of the contact area is found in the pad. This heat generation 
can be observed twice in each loading cycle.   This fact means this heat generation is 
caused by friction between the specimen and pad.  It was found that in the beginning 
stage of fretting loading, gross sliding conditions due to the low frictional coefficient are 
dominant on the contact surface. 
It is found from figure 10 that no frictional temperature rise due to the gross sliding can 

§jj Imaging Area 

Figure 11. Schematic of imaging area 
by infrared thermography. 
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be observed any more at the 151st loading cycle. This implies that the friction 
coefficient increased and partial slip conditions are dominant at this stage. It was also 
found that temperature distributions on the specimen was not homogeneous at this time. 
When tension is applied, lower temperature was observed near the lower trailing edge of 
contact in the specimen (indicated by arrow in figure 10). This means that higher tensile 
stress was generated at the lower trailing edge of contact. This indicates that contact 
tensile stress due to the partial slip condition was applied to the specimen in addition to 
the bulk tensile stress. Conversely, at compression, higher temperature was observed at 
the lower trailing edge of contact in the specimen (also indicated by arrow in figure 10). 
This means higher compressive stress was generated at the lower trailing edge of contact 
due to the contact compressive stress by the partial slip condition in addition to the bulk 
compressive stress. 
Consequently, it was found that the maximum amplitude in cyclic temperature change, 
i.e., maximum amplitude in stress, was observed at the trailing edge of contact. This 
result agrees very well with the results from FEM computations [6] and also the fact that 
fretting fatigue cracks nucleate from the trailing edge of the contact. 

4. Conclusions 

Several experimental investigations of contact problems were made by the use of 
infrared thermography. A new experimental technique using infrared thermography 
combined with infrared transmitting materials was applied for continuous monitoring of 
the temperature distribution on the contact surface. Contact temperature measurement 
was examined for dry sliding contact of a plastic pin with an infrared transmitting disk. 
It was found that steady state contact surface temperature distribution was accurately 
monitored by thermography. Contact stress field was measured by an infrared stress 
measurement system based on the thermoelasticity through an infrared transmitting solid. 
It was found that the contact stress field was successfully visualized by the proposed 
method. Finally, a newly available infrared thermography system was used to 
characterize the near-surface conditions associated with fretting contact. It was found 
that both factional temperature rise due to the interfacial global slip and the temperature 
fluctuation due to thermoelasticity can be measured to evaluate the nature of the contact 
stress field and the mechanics of partial slip fretting contacts. 
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1. Introduction 

An overview about the numerical simulation and experimental modelling of cracks ari- 
sing in homogeneous and nonhomogeneous solids will be given. Shadow optical and 
photoelastic data were collected from digitally sharpened caustics and isochromatic 
fringe patterns by using a digital image analysis system. The geometry of the caustics is 
proportional to the stress field gradient and therefore the caustic contour can be taken as 
a quantity for experimental measurements. 

The solutions of the corresponding mixed boundary value problems of the ther- 
moelasticity were not only obtained by using the FE-method but also by applying the 
experimental method of photoelasticity as well as the shadow optical method of caus- 
tics. 

A photoelastic analysis for cracked two-phase compounds has been performed by 
using the image analysis of isochromatic fringe loops. A combination of the so-called 
phase-stepping method, an automatic polariscope and the multiple point method results 
in an automatic method for the determination of stress intensity factors. 

Based on the caustics equations measuring algorithms can be formulated in order to 
determine stress intensity factors from experimentally gained caustics. The numerical 
simulation of shadow spots and isochromatic fringe patterns, respectively, is based on 
the fundamental equations of optics. By applying a generated finite element mesh nu- 
merically simulated caustics at the tips of straight matrix and interface cracks, respec- 
tively, extending quasistatically in the matrix material or in the inclusion matrix inter- 
face of a circular composite unit cell were obtained. 

In this research contribution, an overview about the experimental and numerical 
modelling of crack systems arising in thermomechanically loaded models of two-phase 
composite structures will be given [1-5]. 
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2. Photoelastic and Shadow Optical Crack Tip Analysis 

A method for a determination of stress intensity factors from isochromatic fringe pat- 
terns by using numerous appropriate measuring points has been provided for the first 
time by Sanford & Dally [6]. By using the stress components near a crack tip as well as 
the basic equation of the photoelasticity the function gk for a photoelastic data point k 
can be expressed as follows 

ro,r(rt,(pt)-aw(/-t>(p,)Y    _, t_   ^ ,   ( Snt  \   _Q 

gi {K,,KU, «3 ,...,«„) = [ 2"* J       ^^^{U^j 

(1) 
After taking a Tailor's series expansion of gk and retaining only the linear terms a 

system of algebraic equations can be obtained 

Aflj+-+(S;}^ 
"'■.-M^IMST A** (2) 

A. 
where i refers to the ith iteration step. A standard Newton-Raphson procedure can be 
used to calculate the stress intensity factors K, and K„ for a set of proper input data 
points. By utilizing digital-image-processing and computergraphics techniques, a set of 
menu-driven software has been developed for interactively implemented fringes proces- 
sing [7]. The stress components in the vicinity of a crack tip under mixed-mode-loading 
are given as functions of the seven parameters K„ KM and the non-singular terms aox, a3, 
a4, b3) and bA. 
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The principle and the experimental set-up of the phase-stepping method from 
Hecker and Morche [8] by using an automatic polariscope are shown in Figure 1. The 
determination of the principle stress directions and the isochromatic fringe order is pos- 
sible by a mathematical combination from 10 images of different angle positions of the 
polariscope, namely: linear polariscope; a/ß; 0/90; 30/120; 60/150; 45/135; 0/0 [°] and 
circular polariscope: a/ß; 0/0; 60/60; 120/120; 0/45/; 0/-45 [°]. A combination of the 
phase-stepping method and the multiple point method results in an automatic method 
for the determination of stress intensity factors. 

if 

Specimen 
IS 

Xt4 wave plat* 
Analyzer 

Figure I. The principle and the experimental set-up 
of the phase-stepping method. 

Figure 2. Experimental set-up for the shadow 
optical method of caustics. 

The shadow optical method represents an important tool for the experimental deter- 
mination of stress intensity factors at the tips of quasistatically extending and fast runn- 
ing cracks, respectively The physical principle underlying the method of shadow pat- 
terns is illustrated in Figure 2. A specimen containing a crack is illuminated with light 
generated by a point light source. In this case, a specimen of a transparent composite 
material is considered. The stress intensification in the region surrounding the crack tip 
leads to a reduction of both the thickness of the specimen and the refractive index of the 
material. As a consequence, in the transmission case, the light passing through the spe- 
cimen is deflected outwards. On an image plane at any distance zo behind the specimen, 
therefore, a dark shadow spot is formed. The spot is bounded by a bright light concen- 
tration, the caustic. The geometry of the caustic is proportional to the stress field gradi- 
ent and therefore the caustic contour can be taken as a quantity for experimental measu- 
rements [9-13]. In the scope of an experimental failure analysis of brittle composites the 
method of caustics is applied to determine stress intensity factors or related quantities at 
crack tips situated in homogeneous components or at the interfaces of composites. 
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3.   Material models of fibrous composites 

3.1    MATERIAL MODEL OF A CRACKED MATRIX 
Fi°ure 3 shows a material model of a cracked matrix with an asymmetrically situated 
inclusion with respect to the crack under thermal load due to a cooling process. 

Figure 4 shows experimentally obtained isochromatic fringe patterns and caustics 
for a straight crack near such an inclusion. Thereby the isochromatic fringes and cau- 
stics were obtained for a material combination of Araldite B and ceramics. The defini- 
tion of a ring region in combination with different angle regions can also be used for the 
determination of the mixed-mode stress intensity factors K, and K„ in relation to the se- 
lected crack tip areas. 

Figure 3. Model of a cracked matrix with an asymmetrically situated inclusion under thermal load 
(matrix: Araldite B: inclusion: Ceramics) 

Specimen geometry: a=S0 mm, x,.=25 mm, >■/.=-/-»' mm, r,. = l7.15 mm 

Figure 4. Experimentally obtained isochromatic fringe patterns and caustics 

A typical result is given in Figure 5. It has been demonstrated, that the values of the 
mixed-mode stress intensity factors K„ K„ and of the parameter au, obtained experi- 
mentally by the method of photoelasticity show a very good coincidence with the cor- 
responding numerical values determined by a finite element calculation. 
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Figure S. Stress intensity factors K/, K// in dependence on the crack tip distance rm. 

An accurate determination of the parameters from isochromatic fringe patterns is 
given within the range 2.5 mm < rm< 7.5 mm of the radius rm. 

Figure 6 gives a comparison of stress intensity factors from experimentally obtained 
isochromatic fringe patterns and caustics, where a good agreement can be stated. Shown 
are typical results from specimens under different thermal loads. 
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Figure 6. Stress intensity factors K/, K// in dependence on temperature (y/r=8mm; Xf-12mm). 

Figure 7 gives a comparison of stress intensity factors from experimentally obtained 
isochromatic fringe patterns with a corresponding finite element calculation, where a 
good agreement can be stated. Shown are typical results from specimens under different 
thermal loads [14, 15]. 
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Figure 7. Stress intensity factors K/, K// in dependence on temperature. 

3.2    BIMATERIAL MODEL 
The experimental determination of stress intensity factors at the tip of a curvilinear 
thermal crack propagating in the matrix material, Araldite B, of a disk-like bimaterial 
model (cf. Figure 8 and 9) has been performed. Thereby a ring region can be used to 
calculate the stress intensity factors in dependence on the crack tip distance rra. 

Figure 8. Mode! of a cracked disk-like bimaterial. 
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Figure 10 gives a comparison of the stress intensity factors K, and K„ gained from 
experimentally obtained isochromatic fringe patterns by using the multiple point 
method of photoelasticity. In this case an accurate determination of the parameters am, 
a3, a4, b3, and b4 from isochromatic fringe patterns is given within the range 2mm< rra 

<llmm of the radius rm. This thermal loading process produces a pure mode-I loading, 
which can also be seen from the K„ -values. 

Figure 9. Experimentally obtained isochromatic fringe patterns and caustics 
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Figure 10. Comparison of stress intensity factors K/ and Kn gained from experimentally obtained 
isochromatic fringe patterns by using the multiple point method of photoelasticity. 

Figure 11 gives a comparison of stress intensity factors from experimentally obtain- 
ed isochromatic fringe patterns and caustics in dependence on projeced crack length a,. 
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Figure 11. Stress intensity factors Kj and K// gained from experimentally obtained 
isochromatic fringe patterns and caustics in dependence on projeced crack length ax. 
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Conclusion 

Shadow optical and photoelastic data were collected from digitally sharpened isochro- 
matic fringe patterns and caustics by using a digital image analysis system. A photo- 
elastic analysis for cracked two-phase compounds has been performed by using the im- 
age analysis of isochromatic fringe loops. A combination of the so-called phase-step- 
ping method, an automatic polariscope and the multiple point method result in an auto- 
matic method for the determination of stress intensity factors. An overview about the 
experimental modelling of cracks arising in plane disk-like models of two-phase com- 
posite structures is given. 
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Abstract 
Shape memory TiNi fiber reinforced /epoxy matrix composite (SMA-FEC) is fabricated to 
demonstrate the suppression effect of crack-tip stress concentration and the fracture toughness (K 
value) under mixed mode stresses in the composite. The test specimens have the two types of angled- 
notches to the transverse direction of the tensile-type specimen, i.e. 6 =45°  ,90° with several crack 
lengths.The stress intensity at the notch-tip is experimentally determined by photoelastic fringes. The 
decreases of K-vale are attributed to the compressive stress field in the matrix which is induced when 
the prestrained TiNi fibers contract to the initial length upon heating above austenitic finish 
temperature of TiNi fiberfT>Af). The dependencies of K value on the prestrain value of TiNi fibers 
as well as on the compressive stress domain size between a crack-tip and fiber are discussed. 

1. Introduction 
The active control of the material degradation (i.e. damage accumulation, crack, delamination etc.) in 
service time and then elongation of failure life of the material components become more and more 
important in recent years owing to the increasing demands for the more safety design of various 
engineering devices and structures. Furthermore, the development of an artificial prevention system 
of sudden failure of machinery and structures also become one of the worthy and attractive research 
subjects to create a new design concept of the intelligent/smart material systems and structures. 
As one of the works concerning to the active control of the strength and fracture of material system, 
Rogers [1] proposed the active control method for retardation of fatigue crack propagation from a 
notch-root by utilizing the contractions of embedded SMA line-type actuator. In his approach, SMA 
actuator is heated by means of direct current joule heating, and then, the large compressive stresses in 
the matrix associated with the shrinkages of TiNi actuator acts to reduce the mean stress level of cyclic 
loading. This enhances the crack-closure phenomena and retardation of the fatigue crack propagation. 
Rogers also tried to discussed about an experimental result on the suppression of the crack-tip 
stresses in a pre-cracked TiNi fiber/epoxy resin matrix composite specimen by using photoelastic 
fringe pattern. However, the change of stress intensity value K has not been clarified yet in detail as 
well as systematically. 
Concerning this problem, the authors have recently studied the improvements of mechanical strength 
as well as the active control of stress intensity value KI under a uniaxial stress condition (i.e. mode 
1) on the basis of the basic experiments of by direct current joule heating of TiNi fibers embedded in 
photoelastic epoxy matrix composite, (TiNi)j/epoxy. [3] [4] [5] However, in general , multi- 
mode stresses work in the machinery or structural components and it results in failure of the whole 
structures, therefore, in the present study,the suppression effect of crack-tip stress concentration and 
the fracture toughness (K value) under mixed mode stresses in the composite is studied . The test 
specimens have the two types of angled-notches to the transverse direction of the tensile-type 
specimen, i.e. 0=45° ,90° with several crack lengths.The stress intensity at the notch-tip is 
experimentally determined by photoelastic fringes. The decreases of K-vale are attributed to the 
compressive stress field in the matrix which is induced when the prestrained TiNi fibers contract to 
the initial length upon heating above austenitic finish temperature of TiNi fiber(T>Af). The 



dependencies of mixed-mode K values(i.e.KI and KII) on the prestrain value of TiNi fibers as well 
as on the compressive stress domain size between a crack-tip and fiber are discussed systematically. 

2.   Design concept of shape memory composite 
Thermoelastic shape memory effect (i.e. shape memory and recovery phenomenon) takes place 
during martensite(M) to austenite(A) phase transformation in SMA with increasing temperature. 
Therefore,  material functional properties of SMA changes clearly depending on the changes of 
temperature [2]   as summarized in Fig. 1 . It should be noticed as a unique property that SMA 
shows more higher stiffness (2-3 times) and large recovery stress at the higher temperature region 
due to inversely thermoelastic phase transformation in opposition to weakening of those properties in 
the general metals. Inconsequence, SMA natively has the smart  functions, i.e., (l)sensor 
(thermal), (2)actuator (shape memory deformation) and (3) memory and shape recovery (namely, 
processor function). These unique properties natively with SMA can be utilized to strengthen the 
composite.The design concept of enhancing the mechanical properties of the SMA composite is 
schematically shown in Fig.2. TiNi fibers are heat-treated to shape-memorize their initial length at 
higher temperatures (>Af), then quenched to room temperature(nearly .martensite start temperature 
=Ms),given tensile prestrain eT(>0) and embedded in the matrix material to form a composite. The 
composite is then heated to temperature(> Af) at which the TiNi fibers tend to shrink back to their 
initial length by the amount of prestrain eT, then the matrix is subjected to compressive stress. It is 
this compressive stress in the matrix that contributes to the enhancement of the tensile properties of 
the composite and fracture toughness. 
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3.   Experiment 
3.1 Test specimen 
Experimental processing, mechanical testing of TiNi/epoxy composite is described. The shape 
memorized TiNi fibers(Ti-50.2at%Ni) of 0.4mm diameter supplied by Kantoc Ltd, Fujisawa, Japan 
are arranged in a mold to which photoelastic epoxy and specified amount of hardener were poured 
and then kept at 130*C for 2hours for curing. The TiNi fibers were first annealed for 30min at 500 
"Cthen quenched in ice-water. Four transformation temperatures of TiNi fiber were determined: 
martensitic start Ms=3rC,martensite finish Mf=15°C, austenitic start As=57°C, and austenitic finish 
Af=63°C from the relationship between strain vs. temperature at constant stress of 94MPa. The 
photoelastic sensitivity constant of this epoxy resin matrix was a =0.116 mm/N. After curing, as- 
molded composite was cooled to room temperature. During the process, TiNi fibers were kept in 
tension with four different prestrains of 0,1,3 and 5%. A center notch which had different angle( 0) 
and length(a). were then cut into the as molded composite specimen by spark-cutting and thin knife- 
edge. In the case of the specimen with angled crack, 0 =90* (i.e. mode I), four different crack 
lengths ,a=3.8,5.0,7.0 and 8.8mm were introduced.on the other hand, in the case of 0=45(i.e. 
mode H),a=7.5,8.8 and 12.2mm in mixed-mode test specimens for changing the domain size (D) 
between a crack-tip and a fiber. The geometries of the composite specimens and pre-crack lengths 
are shown in Fig.3. 
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Fig.3 Geometry of TiNi/epoxy composite specimen with a center crack with angle 0. 

3.2   K-value determination 
The composite specimens were loaded by Tensilon/KTM-IT machine in which constant temperature 
controllable furnace and photoelastic analysis apparatus were combined. A constant load of P=1078N 
was applied to TiNi/epoxy specimen with angled crack 0 =90°  , on the other hand, P=1274N , 0 
=45° for the controlled tensile test machine to form the third or fourth photoelastic fringe pattern . 
The changes of number of fringe pattern lines developed around the notch tip were measured at 
different constant temperatures of 20,30,40,50,60,70,80,90 and 100°C through the plane glass 
window fixed on the wall of the electric heating furnace. The photographs of the changes of fringe 
patterns around a crack-tip with increasing temperature were continuously taken by camera, and then, 
stress intensity factor KI and KII can be calculated from the following formula respectively, i.e., KI 
of mode I (tensile-type) by Irwin's method, and KII of mixed-mode by Smith's method. 
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n is the number of the fringe, t is the composite plate thickness, a is the epoxy photoelasticity 
sensitivity constant, r and 0 m are, respectively, the distance and angle in polar coordinates at point 
M, shown schematically in Fig.4. 
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Fig.4 Photoelastic fringe pattern schematically developed aroud a crack 
(size: a) in the pole figure, (mode I and mixed mode II) 

4.    Results and discussion 
The Experimental results of the photoelastic fringe patterns are shown in Fig.5 for TiNi/epoxy 
specimen with angled crack 6=45° at P=1274N in Fig.5(a), and angled crack 0=90' at 
P=1078N inFig.5(b)   respectively. It should be noticed from Fig.5(a),   (b) that the photoelastic 
fringes decrease abruptly with the increasing temperature,especially, at above Af(=63"C) temperature. 
Concerning the active control of the stress intensity at the crack-tip ,as an example, the dependencies 
of KI-value on environmental temperature (T) at the crack length of 8.8mm in the specimen with 0 
=90'   are shown in Fig.6. KI-value of the specimen with pre-strained TiNi fibers decreases clearly 
above 50~60°C, where the decreasing rate of KI-value depends on the pre-strain value. Although the 
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Fig.5 Photoelastic fringe pattern around a center crack in the test TiNi/epoxyspecimen 

initial absolute K-value differs by the inevitable effect by initially introduced residual stresses in the 
matrix during the fabrication process of TiNi/epoxy composite/The decrease of K-value scarcely is 
recognized in the case of pre-strain=0,but, the drop of K-value increases as the pre-tensile strain of 
TiK'ffiber increases. These facts surely suggest that shape memory effect of the embedded TiNi 
fibers can effectively reduce the stress concentration with increasing prestrain value. 

The experimental result of the reduction in mode I stress intensity factor, Kl, at 80 °C(>AJ) is 
plotted versus pre-strained values et=0,1,3 and 5%, for several crack-lengths in Fig,7(a) and 
similarly shown for mode II.KII, in Fig7(b) in the test specimen with angled crack of 0 =45°  . 
The stress intensity factor ratio,K-value ratio, in Y axis means the normalized value of K which can 
be calculated from' dividing absolute K value in a certain prestrained specimen by the K value of 
zero-prestrained specimen. It can be noticed that all K-values decreases with increases of pre-strain 
value ,'and these decreasing rate( AK) becomes much more high depending on crack-length(a). For 
instance, in the case of the'specimen with 5% prestrain and 0 =45°  crack , the decreased values by- 
shape memory effect are AKI=36%,AKII=21.4% ata=7.5mm, AKI=45.4%,AKII=46% at 
a=8.8mm, and AKI=48.7%, AKII=58.2% at a=12.2mm respectively. The same trend can be 
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Tmperature(°C) 

Fi* 6 Stress intensity factor KI-ratio as a functions of temperature under three 
"'    different prestrains in a case of the specimen with crack length a-S.Smm 

and angle 8 =90°  . 



recognized in the case of of single mode KI in the specimen with angled crack 0 =90° as shown in 
Fig.7(c),i.e. the decrease range, AKI=27.6% ata=3.8mm,AKI=29.5% ata=5mm, AKI=30.7% 
at a=7mm and AKI=82.8% at a=Omm respectively. These results with decreasing dependencies of 
K-value (AK) on the crack-length(a) suggest that the decrease of K experimentally seems to become 
most intense as the domain size between the crack-tip and fiber surface in front of a crack. The same 
trend of the dependency of drop of K-value on the domain size was previously discussed by the 
authors using Eshelby's equivalent inclusion method. As to the relationship between K ratio and 
prestrain value, the analytical model explains the same trend as the experimental results, i.e., K -value 
decreases with increase in prestrain, however, the predictions are apt to show larger values than 
those of the experiment. 
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From the experimental evidences of this study, our proposed " new material system for active failure 
prevention by using SMA composite" will become a promising idea for active control of the material 
degradation (i.e. damage accumulation, crack, delamination etc.) in service time and then 
elongation of failure life of the material components in the near future. Furthermore, the development 
of an artificial prevention system of sudden failure of machinery and structures also become one of 
the worthy and attractive research subjects to create a new design concept of the intelligent/smart 
material systems and structures. 

5.   Conclusion 
Following the previous study on active suppression of crack-tip stress concentration and the increase 
of fracture toughness (K value) by using shape memory strengthening in  shape memory TiNi fiber 
reinforced /epoxy matrix composite (SMA-FEC), in the present paper.the control of crack-tip stress 
concentration and the fracture toughness (K value) under mixed mode stresses.KI and KII mode,are 
investigated. The test specimens have the two types of angled-notchcs to the transverse direction of 
the tensile-type specimen, i.e. 6 =45* ,90° with several crack lengths.The stress intensity at the 
notch-tip is experimentally determined by photoelastic fringes. The decreases of KII value in the 
mixed mode were also experimentally confirmed similarly as the former mode I type (KI) specimen 
when the prestrained TiNi fibers contract to the initial length upon heating above austenitic finish 
temperature of TiNi fiber(T>Af). The dependencies of K value on the prestrain value of TiNi fibers 
and crack length (i.e., compressive stress domain size between a crack-tip and fiber) are recognized 
as previously predicted by the authors. 
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